This document specifies security means and procedures for AVPS Type 3 as specified in ISO 23374-1. It focuses on operation interfaces and management interfaces as defined in ISO 23374-1.

  • Technical specification
    44 pages
    English language
    sale 15% off
  • Draft
    44 pages
    English language
    sale 15% off
  • Draft
    44 pages
    English language
    sale 15% off

This document describes a basic role and functional model of the intelligent transport systems (ITS) data aggregation role, which is a basic role of ISO/TR 4445. It provides a paradigm describing: a) a framework for the provision of ITS data aggregation for cooperative ITS service application; b) a description of the concept of a role and functional model for such roles; c) a conceptual architecture between actors involved in the provision/receipt of ITS data aggregation; d) references for the key documents on which the architecture is based; e) a taxonomy of the organization of generic procedures.

  • Technical report
    11 pages
    English language
    sale 15% off
  • Draft
    11 pages
    English language
    sale 15% off
  • Draft
    11 pages
    English language
    sale 15% off

This document defines an additional data concept that may be transferred as the ‘optional additional data ’ part of an eCall MSD, as defined in EN 15722, that may be transferred from a vehicle to a PSAP in the event of a crash or emergency via an eCall communication session.
The purpose of this document is to provide means to notify the PSAP of any limitations to the sending equipment that are endorsed by other standards, but not (immediately) apparent to the receiver. Lack of knowledge about these limitations can hamper the emergency process. This document describes an additional data concept which facilitates the inclusion of information about such limitations in a consistent and usable matter.
This document can be seen as an addendum to EN 15722; it contains as little redundancy as possible.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the syntax and semantics of data objects in the field of electronic fee collection (EFC). The definitions of data types and assignment of semantics are provided in accordance with the abstract syntax notation one (ASN.1) technique, as specified in ISO/IEC 8824-1. This document defines:
—     ASN.1 (data) types within the fields of EFC;
—     ASN.1 (data) types of a more general use that are used more specifically in standards related to EFC.
This document does not seek to define ASN.1 (data) types that are primarily related to other fields that operate in conjunction with EFC, such as cooperative intelligent transport systems (C-ITS), the financial sector, etc.

  • Draft
    55 pages
    English language
    sale 10% off
    e-Library read for
    1 day

In respect of pan-European eCall (operating requirements defined in EN 16072), this document defines the high-level application protocols, procedures and processes required to provide the eCall service using a TS12 emergency call over a circuit-switched mobile communications network.
NOTE 1   The objective of implementing the pan-European in-vehicle emergency call system (eCall) is to automate the notification of a traffic accident, wherever in Europe, with the same technical standards and the same quality of services objectives by using a PLMN (such as ETSI prime medium) which supports the European harmonized 112/E112 emergency number (TS12 ETSI TS 122 003) and to provide a means of manually triggering the notification of an emergency incident.
NOTE 2   HLAP requirements for third-party services supporting eCall can be found in EN 16102, and have been developed in conjunction with the development of this work item, and is consistent in respect of the interface to the PSAP. This deliverable makes reference to those provisions but does not duplicate them.

  • Draft
    54 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the syntax and semantics of data objects in the field of electronic fee collection (EFC). The definitions of data types and assignment of semantics are provided in accordance with the abstract syntax notation one (ASN.1) technique, as specified in ISO/IEC 8824-1. This document defines: — ASN.1 (data) types within the fields of EFC; — ASN.1 (data) types of a more general use that are used more specifically in standards related to EFC. This document does not seek to define ASN.1 (data) types that are primarily related to other fields that operate in conjunction with EFC, such as cooperative intelligent transport systems (C-ITS), the financial sector, etc.

  • Standard
    49 pages
    English language
    sale 15% off

Automated valet parking systems (AVPSs) perform level 4 automated driving of individual or multiple unoccupied vehicles within a prescribed area of a parking facility. This document specifies performance requirements for the operation functions, the environmental conditions within parking facilities where automated vehicle operation is performed, and the test procedures to verify the performance requirements. An AVPS is comprised of physically separated sub-systems distributed among vehicles, facility equipment and user domains. The functionalities of AVPSs are realized by cooperation of these sub-systems, which are, in many cases, provided by different organizations. This document defines the system architecture and the communication interfaces between the sub-systems at the logical level. An AVPS manages its system participants (i.e. AVPS-compliant vehicles and parking facilities) and provides interfaces to other facility users and involved persons (e.g. system operators, facility managers). This document contains requirements for the management functions such as checking compatibility between vehicles and parking facilities, performing remote assistance and recovery when automated driving cannot be performed, and executing operation stop commands in response to the actions of other facility users. AVPSs are intended for use by a service provider upon receiving authority over vehicles from individual service recipients. This document does not include parking automation technologies that are solely based on usage by an individual user. If the vehicle is put into driverless operation directly by the user, this is not considered to be part of the AVPS.

  • Standard
    153 pages
    English language
    sale 15% off
  • Technical specification
    146 pages
    English language
    sale 15% off
  • Draft
    146 pages
    English language
    sale 15% off
  • Draft
    146 pages
    English language
    sale 15% off

This document defines an additional data concept that can be transferred as the ‘optional additional data’ part of an eCall MSD, as defined in EN 15722, that can be transferred from a vehicle to a PSAP in the event of a crash or emergency via an eCall communication session.
The purpose of this document is to provide means to notify the PSAP of any limitations to the sending equipment that are endorsed by other standards, but not (immediately) apparent to the receiver. Lack of knowledge about these limitations can hamper the emergency process. This document describes an additional data concept which facilitates the inclusion of information about such limitations in a consistent and usable matter.
This document can be seen as an addendum to EN 15722; it contains as little redundancy as possible.
NOTE 1   The communications media protocols and methods for the transmission of the eCall message are not specified in this document.
NOTE 2   Additional data concepts can also be transferred, and it is advised to register any such data concepts using a data registry as defined in EN ISO 24978 [1]. See www.esafetydata.com for an example.

  • Standard
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    18 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies the data exchange of technical documents such as bill of material, technical drawings and other related technical documents for rolling stock.

  • Standard
    87 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    73 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    73 pages
    English language
    sale 10% off
    e-Library read for
    1 day

It defines the test suite structure and the test purposes for conformity evaluation of on-board and roadside equipment designed for compliance with the requirements set up in EN 15509.

  • Standard
    122 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    147 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document contains specifications for a set of ITS station security services required to ensure the authenticity of the source and integrity of information exchanged between trusted entities, i.e.:
—    between devices operated as bounded secured managed entities, i.e. "ITS Station Communication Units" (ITS-SCU) and "ITS station units" (ITS-SU) as specified in ISO 21217; and
—    between ITS-SUs (composed of one or several ITS-SCUs) and external trusted entities such as sensor and control networks.
These services include the authentication and secure session establishment which are required to exchange information in a trusted and secure manner.
These services are essential for many intelligent transport system (ITS) applications and services including time-critical safety applications, automated driving, remote management of ITS stations (ISO 24102-2), and roadside/infrastructure-related services.

  • Standard
    114 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    110 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The scope for this European Standard is limited to:
-   payment method: Central account based on EFC-DSRC;
-   physical systems: OBU, RSE and the DSRC interface between them (all functions and information flows related to these parts);
-   DSRC-link requirements;
-   EFC transactions over the DSRC interface;
-   data elements to be used by OBU and RSE used in EFC-DSRC transactions;
-   security mechanisms for OBU and RSE used in EFC-DSRC transactions.

  • Standard
    61 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    59 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Existing public and private distribution API specifications will be identified, where practicable, and summarised in a number of ways, including: ownership of specification, scope of API functionality, basis of data model and data categorisation used, management of reference data, commercial access rules to the specification, governance of the specification, existing examples of use for MaaS booking, coherence with existing CEN standards, potential for becoming a new CEN standard.

  • Technical report
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines the charging performance metrics to be used during the evaluation or on-going monitoring of an electronic fee collection (EFC) system and the examination framework for the measurement of these metrics. It specifies a method for the specification and documentation of a specific examination framework which can be used by the responsible entity to evaluate charging performance for a particular information exchange interface or for overall charging performance within a toll scheme. The following scheme types are within the scope of this document: a) discrete schemes; b) continuous schemes (autonomous type of systems). This document defines measurements only on standardized interfaces. This document defines metrics for the charging performance of EFC systems in terms of the level of errors associated with charging computation. This document describes a set of metrics with definitions, principles and formulations, which together make up a reference framework for the establishment of requirements for EFC systems and the subsequent examination of charging performance. This document defines metrics for the following information exchanges: — charge reports (including usage evidence); — toll declarations; — exception lists; — billing details and associated event data; — payment claims on the level of service user accounts; — end-to-end metrics which assess the overall performance of the charging process. These metrics focus solely on the outcome of the charging process, i.e. the amount charged in relation to a pre-measured or theoretically correct amount, rather than intermediate variables from various components as sensors, such as positioning accuracy, signal range or optical resolution. This approach ensures comparable results for each metric in all relevant situations. The following aspects are outside the scope of this document. — Definition of specific numeric performance bounds, or average or worst-case error bounds in percentage or monetary units. — Specification of a common reference system which would be required for comparison of performance between systems. — Measurements on proprietary interfaces. NOTE It is not possible to define standardized metrics on such system properties. Neither is it possible to define metrics for parts of the charging processing chain which are considered to be the internal matter of an interoperability partner, such as: — equipment performance, e.g. for on-board equipment (OBE), roadside equipment (RSE) or data centres such as signal range, optical resolution or computing system availability; — position performance metrics: the quality of data generated by position sensors is considered as an internal aspect of the GNSS front end. It is masked by correction algorithms, filtering, inferring of data and the robustness of the charge object recognition algorithms. — The evaluation of the expected performance of a system based on modelling and measured data from a trial at another place.

  • Technical specification
    118 pages
    English language
    sale 15% off
  • Draft
    120 pages
    English language
    sale 15% off
  • Draft
    120 pages
    English language
    sale 15% off

Motorway chauffeur systems (MCS) perform Level 3 automated driving on limited access motorways with the presence of a fallback-ready user (FRU). MCS can be implemented in various forms capable of responding to different driving scenarios. This document describes a framework of MCS including system characteristics, system states/transition conditions and system functions. MCS are equipped with a basic set of functionalities to perform in-lane operation and can also be equipped with additional functionalities such as lane changing. This document specifies requirements of the basic set of functionalities and test procedures to verify these requirements. The requirements include vehicle operation to perform the entire dynamic driving task (DDT) within the current lane of travel, to issue a request to intervene (RTI) before disengaging, and to extend operation and temporarily continue to perform the DDT after issuing an RTI. This document describes one specific form of system engagement. Other forms are possible. These other system engagement forms, especially those provided in combination with other driving automation system features, are not within the scope of this document. Requirements and test procedures for the additional functionalities are provided in other parts of the ISO 23792 series. Means related to setting a destination and selecting a route to reach the destination are not within the scope of this document. This document applies to MCS installed in light vehicles.

  • Technical specification
    30 pages
    English language
    sale 15% off
  • Draft
    30 pages
    English language
    sale 15% off
  • Draft
    30 pages
    English language
    sale 15% off

This document defines the TPEG Weather (WEA) application for reporting weather information for travellers. It provides general weather-related information to all travellers and is not limited to a specific mode of transportation. This application does not provide specific weather-related safety warnings to drivers; these are provided as safety related messages as part of the TPEG2-TEC application (ISO 21219-15). The WEA application provides weather-related forecasts and status information over multiple time periods and for multiple, possibly linked, geographical areas. NOTE The presentation of the information is dependent on the specific human-machine interface (HMI) of the receiving device. Therefore, this document does not define any prerequisites for the HMI of the device. This document contains examples to help explain how some typical weather reports can be signalled (see Annex C) and suggested translations between WEA table codes and WMO SYNOP weather observation codes (see Annex D).

  • Standard
    61 pages
    English language
    sale 15% off

This document specifies the data exchange of technical documents such as bill of material, technical drawings and other related technical documents for rolling stock.

  • Standard
    87 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    73 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    73 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines the TPEG Speed information (SPI) application for reporting speed information for travellers. Speed limits are usually indicated to the driver through roadside signs. Drivers who are aware of the speed limit at all times are more likely to drive safely, which improves road safety. Most speed limit signs are static and remain unchanged for years and are thus available through navigation system map databases. However, there is an increasing number of variable message signs, temporary signing (e.g. for road works) and also changed speed limits which are not yet reflected in the map databases. With the TPEG-SPI application, speed limit information is offered in an accurate way so that different lanes and different vehicle types can be differentiated. TPEG-SPI also allows the drivers to be aware of the current allowed (maximum) speed, by delivering timely information about the current position and values of speed limits to the navigation or driver assistance systems. These data are seen as informational and are intended to be encoded in a compact way to minimize bandwidth consumption. TPEG2-SPI supports direct and indirect speed limits. Direct speed limits are used for signs showing a maximum speed at which a vehicle is allowed to travel. Such speed limit signs can be static or dynamic. Indirect speed limits refer to the speed of other road users. It is primarily the vehicle in front of the own vehicle that is used as a reference.

  • Standard
    35 pages
    English language
    sale 15% off
  • Draft
    33 pages
    English language
    sale 15% off

This document specifies the "traffic event compact" (TEC) TPEG application. The TEC application has been specifically designed to support information about traffic events (e.g. road works, traffic jams). A specific form of traffic event is local hazard warnings which, being safety-related messages, are sent with high priority to warn a driver of unexpected dangerous situations (e.g. black-ice, accident beyond curves, obstacles on road, etc.). Generally, the TEC application is designed to allow receivers to: — ensure travel safety for the driver; — enable the calculation of alternative routes; — avoid delays (e.g. traffic jams); — warn the driver of obstructions on route; and — provide the driver with information on infrastructural problems (e.g. closed petrol stations, non-functioning emergency telephones).

  • Standard
    80 pages
    English language
    sale 15% off

This document specifies the method for delivering service and network information within a TPEG service. The TPEG-SNI application is designed to allow the efficient, language-independent delivery of information about the availability of the same service on another bearer channel, or similar service data from another service provider, directly from service provider to end-users. A number of tables of information are described in this document which provide comprehensive options for describing services, their timing, content, geographical coverage, etc. In all TPEG streams, it is mandatory to deliver the so-called guide to the service table (GST). Additionally, it is possible to signal linkage of content between different bearers and services.

  • Standard
    60 pages
    English language
    sale 15% off

This document specifies the TPEG parking information (PKI) application which has been designed to deliver parking information to a variety of receivers using a number of different channels, particularly digital broadcasting and internet technologies. Parking information can be presented to the user in many different ways, including text, voice or graphics. Today, traffic congestion has become a serious problem in urban areas. Some traffic congestion is attributed to drivers searching for parking spaces. Timely provision of parking information can help to ease traffic congestion. Furthermore, parking information is valuable for visitors, particularly when it can be used to signal where a temporary parking facility is established for a special event.

  • Standard
    51 pages
    English language
    sale 15% off

This document specifies the TPEG fuel price information and availability (FPI) application. The FPI application has been specifically designed to support information from fuel stations, such as their location, fuel types offered and fuel pricing and availability information. The standardized delivery, via TPEG technology, of fuel price information has the following benefits for end users of a TPEG service: a) cost savings to the driver through improved ease of access to price information; b) potentially significant cost savings for fleet operators through improved ease of access to price information; c) environmental benefits from drivers not having to drive around to find the cheapest fuel prices; d) safety improvements for highways authorities, as drivers are less likely to run out of fuel if they are well-informed of local availability and prices; e) as availability of new fuels becomes more common, and more vehicles begin to use them (e.g. biofuels, hydrogen, etc.), drivers will be better informed about availability of fuelling stations. The TPEG FPI application (as an add-on service component next to traffic information, for example) is laid out to support large numbers of fuel stations and fuel prices with only modest bandwidth requirements The application described in this document (TPEG2-FPI) is not appropriate for cases where the objective is to inform electric vehicles of the location of charging stations and the availability of charging points. In such cases, the TPEG application TPEG2-EMI (electro mobility information) is chosen. This is because while TPEG2-FPI (the application described in this document) contains rudimentary support for electric charging stations, a TISA investigation revealed that a simple extension/differentiation of TPEG2-FPI is insufficient for addressing the evolving market needs of the electric vehicle market. Hence, a separate TPEG application has been created to serve the information needs of electric vehicles and their operators: TPEG2-EMI, specified in ISO/TS 21219-25.

  • Standard
    64 pages
    English language
    sale 15% off

This document specifies the test suite structure (TSS) and test purposes (TPs) for evaluation of on-board equipment (OBE) and roadside equipment (RSE) to EN 15509.
Normative Annex A presents the test purposes for the OBE.
Normative Annex B presents the test purposes for the RSE.
Normative Annex C provides the protocol conformance test report (PCTR) proforma for OBE.
Normative Annex D provides the PCTR proforma for RSE.

  • Standard
    122 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    147 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines the TPEG conditional access information (CAI) application. It allows the protection of the content of a TPEG service from unauthorized access. It further supports the management of subscriber information (e.g. control words and entitlement control message, ECM) on client devices in order to setup, prolong or revoke a subscription on a given client device. The CAI application defines: — the logical channel for the transmission of the additional CAI, and — how the CAI is linked and synchronized to the scrambled content. This document is related to conditional access applied on the service component level. It can be integrated into different conditional access systems. NOTE The basic concept behind the CAI application is to transport CAI in separate TPEG service components of a dedicated application type and to define a service and network information (SNI) table that contains the link between scrambled content and related CAI.

  • Standard
    7 pages
    English language
    sale 15% off

This document defines terms, characterization and the relationship of concepts, defined using model-driven architecture methods, for parking and parking-related activities (both on-street and off-street) covering common data supporting business to business exchanges and end user services.

  • Technical specification
    247 pages
    English language
    sale 15% off
  • Draft
    245 pages
    English language
    sale 15% off
  • Draft
    245 pages
    English language
    sale 15% off

This document contains specifications for a set of ITS station security services required to ensure the authenticity of the source and integrity of information exchanged between trusted entities, i.e.:
—    between devices operated as bounded secured managed entities, i.e. "ITS Station Communication Units" (ITS-SCU) and "ITS station units" (ITS-SU) as specified in ISO 21217; and
—    between ITS-SUs (composed of one or several ITS-SCUs) and external trusted entities such as sensor and control networks.
These services include the authentication and secure session establishment which are required to exchange information in a trusted and secure manner.
These services are essential for many intelligent transport system (ITS) applications and services including time-critical safety applications, automated driving, remote management of ITS stations (ISO 24102-2), and roadside/infrastructure-related services.

  • Standard
    114 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    110 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This standard specifies the conceptual and logical data model and physical encoding formats for geographic databases for Intelligent Transport Systems (ITS) applications and services. It includes a specification of potential contents of such databases (data dictionaries for Features, Attributes and Relationships), a specification of how these contents shall be represented, and of how relevant information about the database itself can be specified (metadata).
The focus of this standard is on ITS applications and services and it emphasizes road and road-related information. ITS applications and services, however, also require information in addition to road and road-related information.
Typical ITS applications and services targeted by this International Standard are in-vehicle or portable navigation systems, traffic management centres, or services linked with road management systems, including public transport systems.
The Conceptual Data Model has a broader focus than ITS applications and services. It is application-independent, allowing for future harmonization of this standard with other geographic database standards.
In order to deal with a multiple data provider environment and new applications, conceptual models, features, attributes and relationships are expanded in GDF5.1.
GDF5.1 is separated into two parts according to methods of utilization.
GDF5.1 Part 1 defines application-independent map data shared between multiple sources.
GDF5.1 Part 2 defines map data used in automated driving systems, cooperative ITS, and multi-modal transport.

  • Standard
    1077 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    1074 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document contains specifications for a set of ITS station security services required to ensure the authenticity of the source and integrity of information exchanged between trusted entities, i.e.: — between devices operated as bounded secured managed entities, i.e. "ITS Station Communication Units" (ITS-SCU) and "ITS station units" (ITS-SU) as specified in ISO 21217; and — between ITS-SUs (composed of one or several ITS-SCUs) and external trusted entities such as sensor and control networks. These services include the authentication and secure session establishment which are required to exchange information in a trusted and secure manner. These services are essential for many intelligent transport system (ITS) applications and services including time-critical safety applications, automated driving, remote management of ITS stations (ISO 24102-2), and roadside/infrastructure-related services.

  • Standard
    100 pages
    English language
    sale 15% off
  • Draft
    100 pages
    English language
    sale 15% off
  • Draft
    100 pages
    English language
    sale 15% off

In respect of pan European eCall (operating requirements defined in EN 16072), this document defines the high level application protocols, procedures and processes required to provide the eCall service via a packet switched wireless communications network using IMS (IP Multimedia Subsystem) and wireless access (such as LTE, NR and their successors).
This document assumes support of eCall using IMS over packet switched networks by an IVS and a PSAP and further assumes that all PLMNs available to an IVS at the time an eCall or test eCall is initiated are packet switched networks. Support of eCall where eCall using IMS over packet switched networks is not supported by an IVS or PSAP is out of the scope of this document.
At some moment in time packet switched networks will be the only Public Land Mobile Networks (PLMN) available. However as long as GSM/UMTS PLMNs are available (Teleservice 12/TS12) ETSI TS 122 003 will remain operational. Both the use of such PLMNs and the logic behind choosing the appropriate network in a hybrid situation (where both packet-switched and circuit-switched networks are available) are out of scope of this document.
NOTE 1   The objective of implementing the pan-European in-vehicle emergency call system (eCall) is to automate the notification of a traffic accident, wherever in Europe, with the same technical standards and the same quality of services objectives by using a PLMN (such as ETSI prime medium) which supports the European harmonized 112/E112 emergency number (TS12 ETSI TS 122 003 or IMS packet switched network) and to provide a means of manually triggering the notification of an emergency incident.
NOTE 2   HLAP requirements for third party services supporting eCall can be found in EN 16102,. This document makes reference to those provisions but does not duplicate them.

  • Technical specification
    52 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes the architecture of a secure process flow between a source ITS system and a destination ITS system to provide an ‘incident support information system’ (ISIS) to emergency responders by accessing (with the agreement of the vehicle owners/keepers) data from a crashed vehicle and/or other vehicles, or drones, in the vicinity of the incident.

  • Technical specification
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Existing public and private distribution API specifications will be identified, where practicable, and summarised in a number of ways, including: ownership of specification, scope of API functionality, basis of data model and data categorisation used, management of reference data, commercial access rules to the specification, governance of the specification, existing examples of use for MaaS booking, coherence with existing CEN standards, potential for becoming a new CEN standard.

  • Technical report
    30 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the application interface in the context of electronic fee collection (EFC) systems using dedicated short-range communication (DSRC).
The EFC application interface is the EFC application process interface to the DSRC application layer, as can be seen in Figure 1. This document comprises specifications of:
—    EFC attributes (i.e. EFC application information) that can also be used for other applications and/or interfaces;
—    the addressing procedures of EFC attributes and (hardware) components (e.g. integrated circuit(s) card);
—    EFC application functions, i.e. further qualification of actions by definitions of the concerned services, assignment of associated ActionType values, and content and meaning of action parameters;
—    the EFC transaction model, which defines the common elements and steps of any EFC transaction;
—    the behaviour of the interface so as to ensure interoperability on an EFC-DSRC application interface level.
This is an interface standard, adhering to the open systems interconnection (OSI) philosophy (see ISO/IEC 7498-1), and it is as such not primarily concerned with the implementation choices to be realized at either side of the interface.
This document provides security-specific functionality as place holders (data and functions) to enable the implementation of secure EFC transactions. Yet the specification of the security policy (including specific security algorithms and key management) remains at the discretion and under the control of the EFC operator, and hence is outside the scope of this document.

  • Standard
    131 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    130 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This part of the EN12896-X series (Transmodel-Part 10) takes into account the conceptual data model for the 'new modes' (vehicle pooling, vehicle sharing, taxis, vehicle rental) elaborated within CEN TS 17413 (Models and Definitions for New Modes) and is dedicated to be amended and re- published as a reference data model for the alternative modes of transport (Part 10 of the Public Transport Reference Data Model).
This new publication takes into account the revision of the conceptual model (published as CEN TS 17413) by the project team TC278 PT0303 working on the implementation of the 'new modes' model (NeTEx-Part5).
EN12896-10, supplementing the series of EN12896-X, establishes the semantic reference for the alternative modes data domain and thus facilitates the integration of these modes into the overall mobility environment, in particular into multimodal travel services (e.g. trip planning systems).

  • Standard
    258 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    258 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The scope for this European Standard is limited to:
-   payment method: Central account based on EFC-DSRC;
-   physical systems: OBU, RSE and the DSRC interface between them (all functions and information flows related to these parts);
-   DSRC-link requirements;
-   EFC transactions over the DSRC interface;
-   data elements to be used by OBU and RSE used in EFC-DSRC transactions;
-   security mechanisms for OBU and RSE used in EFC-DSRC transactions.

  • Standard
    61 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    59 pages
    English language
    sale 10% off
    e-Library read for
    1 day

Service Interface for Real Time Information (SIRI) is a specification for an interface that allows systems running computer applications to exchange information about the planned, current or projected performance of the public transport operations.
The scope of this WI is to update CEN/EN 15531-2:2015 which allows pairs of server computers to exchange structured real-time information about schedules, vehicles, and connections, together with general informational messages related to the operation of the services. The information can be used for many different purposes, for example:
• To provide real time-departure from stop information for display on stops, internet and mobile delivery systems;
• To provide real-time progress information about individual vehicles;
• To manage the movement of buses roaming between areas covered by different servers;
• To manage the synchronisation of guaranteed connections between fetcher and feeder services;
• To exchange planned and real-time timetable updates;
• To distribute status messages about the operation of the services;
• To provide performance information to operational history and other management systems.
Implementations SIRI have revealed a number of improvements and some minor enhancements necessary for a successful and uniform usage of the specification in the future.
The main elements out of this work item will be:
o Prepare an updated edition of the TS as a document
o Update the common XSD of SIRI parts 1-5
The new work item will consider the projects of
o PT companies and IT-suppliers especially in Switzerland, Germany, France, Netherlands and Sweden
o Railway traffic
o accessibility in public transport

  • Standard
    158 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    167 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This standard specifies the conceptual and logical data model and physical encoding formats for geographic databases for Intelligent Transport Systems (ITS) applications and services. It includes a specification of potential contents of such databases (data dictionaries for Features, Attributes and Relationships), a specification of how these contents shall be represented, and of how relevant information about the database itself can be specified (metadata).
The focus of this standard is on ITS applications and services and it emphasizes road and road-related information. ITS applications and services, however, also require information in addition to road and road-related information.
Typical ITS applications and services targeted by this International Standard are in-vehicle or portable navigation systems, traffic management centres, or services linked with road management systems, including public transport systems.
The Conceptual Data Model has a broader focus than ITS applications and services. It is application-independent, allowing for future harmonization of this standard with other geographic database standards.
In order to deal with a multiple data provider environment and new applications, conceptual models, features, attributes and relationships are expanded in GDF5.1.
GDF5.1 is separated into two parts according to methods of utilization.
GDF5.1 Part 1 defines application-independent map data shared between multiple sources.
GDF5.1 Part 2 defines map data used in automated driving systems, cooperative ITS, and multi-modal transport.

  • Standard
    604 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    601 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines an index to the complete set of TPEG Generation 2 toolkit components and applications. New applications are enumerated with an application identification (AID) as they are added to the TPEG applications family. NOTE 1 This document will be updated when new applications occur in order to indicate the latest status and the inter-working of the various TPEG specifications. This document will be revised as a new edition every time a new issue of any other specification is issued. NOTE 2 Preliminary AIDs are allocated and managed by TISA and are listed at Reference.

  • Standard
    9 pages
    English language
    sale 15% off

This document describes the enterprise view (see ISO/TS 14812:2022, 3.1.4.3) of integrated mobility based on the role and responsibility models in the mobility as a service (MaaS) and mobility on demand (MOD) ecosystems as described in ISO/TR 4447. Other ISO documents (e.g. ISO 24014-1, ISO 17573-1 and ISO/TR 21724-1) have been reviewed in order to enhance and merge the MaaS and MOD role models. The enterprise view addresses the relationships between organizations and users, and the roles those entities play in the delivery and consumption of mobility services. Relationships between entities are dependent on the roles those entities take in the delivery of user services. Enterprise objects interact to exchange information, manage and operate systems beyond the scope of one organization. The enterprise view focuses on the relationships between those enterprise objects, but also defines how enterprise objects interact with physical objects, which appear in the enterprise view as "resources". This document focuses on mobility service concepts where the included transport services are publicly available. Examples of such transport services are listed in Clause 3.

  • Technical report
    19 pages
    English language
    sale 15% off
  • Draft
    19 pages
    English language
    sale 15% off
  • Draft
    19 pages
    English language
    sale 15% off

This document specifies basic control strategies, minimum functional requirements, basic driver interface elements, and test procedures for verifying the system requirements for collision evasive lateral manoeuvre systems (CELM). A CELM is a safety system aimed at supporting the driver’s vehicle operation by avoiding collisions with objects in the forward path of the vehicle. When a collision is predicted, the CELM controls lateral movement of the vehicle by generating yaw moment. The lateral control manoeuvres can be performed automatically by CELM or can be initiated by the driver and supported by CELM. Specific methods for object detection and other environmental perception technologies are not described in this document. This document applies to light vehicles and heavy trucks. Vehicles equipped with trailers are not within the scope of this document.

  • Standard
    31 pages
    English language
    sale 15% off

This document addresses light vehicles,[1] for example passenger cars, pick-up trucks, light vans and sport utility vehicles (motorcycles excluded), equipped with partially-automated parking systems (PAPS). This document establishes minimum functionality requirements that the driver can expect and that are to be taken into account by the manufacturer. There are two possible types of PAPS configuration. — Type 1: the system is supervised by the conventional driver located in the driver’s seat. — Type 2: the system is supervised by the remote driver (present within or outside the vehicle), who is not necessarily located in the driver’s seat. The vehicle remains in the line of sight of the remote driver. This document addresses minimum requirements and conditions for safety, system performance and function, including human-machine interface (HMI) information content and a description of system operating states, for both types of system. The requirements include the driver, who supervises the safety throughout the system manoeuvres. System test requirements are also addressed, including test criteria, method and conditions.

  • Standard
    29 pages
    English language
    sale 15% off
  • Draft
    29 pages
    English language
    sale 15% off
  • Draft
    29 pages
    English language
    sale 15% off

This document: — examines and analyses the safety environment for low-speed automated driving services (LSADS); — describes the safety role supplement to the functional model described in ISO/TS 5255-1; — describes the supplemental safety points for LSADS; — describes role for the functional model of service applications for LSADS. This document can contribute to the development of future automated driving system service safety requirement use cases, other than the one described in ISO/TS 5255-1. This document is applicable to services using LSADS-equipped vehicles only. In-vehicle control system is not in scope of this document.

  • Technical report
    9 pages
    English language
    sale 15% off
  • Technical report
    9 pages
    English language
    sale 15% off

This document specifies the application interface in the context of electronic fee collection (EFC) systems using dedicated short-range communication (DSRC).
The EFC application interface is the EFC application process interface to the DSRC application layer, as can be seen in Figure 1. This document comprises specifications of:
—    EFC attributes (i.e. EFC application information) that can also be used for other applications and/or interfaces;
—    the addressing procedures of EFC attributes and (hardware) components (e.g. integrated circuit(s) card);
—    EFC application functions, i.e. further qualification of actions by definitions of the concerned services, assignment of associated ActionType values, and content and meaning of action parameters;
—    the EFC transaction model, which defines the common elements and steps of any EFC transaction;
—    the behaviour of the interface so as to ensure interoperability on an EFC-DSRC application interface level.
This is an interface standard, adhering to the open systems interconnection (OSI) philosophy (see ISO/IEC 7498-1), and it is as such not primarily concerned with the implementation choices to be realized at either side of the interface.
This document provides security-specific functionality as place holders (data and functions) to enable the implementation of secure EFC transactions. Yet the specification of the security policy (including specific security algorithms and key management) remains at the discretion and under the control of the EFC operator, and hence is outside the scope of this document.

  • Standard
    131 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    130 pages
    English language
    sale 10% off
    e-Library read for
    1 day

In respect of pan European eCall (operating requirements defined in EN 16072), this document defines the high level application protocols, procedures and processes required to provide the eCall service via a packet switched wireless communications network using IMS (IP Multimedia Subsystem) and wireless access (such as LTE, NR and their successors).
This document assumes support of eCall using IMS over packet switched networks by an IVS and a PSAP and further assumes that all PLMNs available to an IVS at the time an eCall or test eCall is initiated are packet switched networks. Support of eCall where eCall using IMS over packet switched networks is not supported by an IVS or PSAP is out of the scope of this document.
At some moment in time packet switched networks will be the only Public Land Mobile Networks (PLMN) available. However as long as GSM/UMTS PLMNs are available (Teleservice 12/TS12) ETSI TS 122 003 will remain operational. Both the use of such PLMNs and the logic behind choosing the appropriate network in a hybrid situation (where both packet-switched and circuit-switched networks are available) are out of scope of this document.
NOTE 1   The objective of implementing the pan-European in-vehicle emergency call system (eCall) is to automate the notification of a traffic accident, wherever in Europe, with the same technical standards and the same quality of services objectives by using a PLMN (such as ETSI prime medium) which supports the European harmonized 112/E112 emergency number (TS12 ETSI TS 122 003 or IMS packet switched network) and to provide a means of manually triggering the notification of an emergency incident.
NOTE 2   HLAP requirements for third party services supporting eCall can be found in EN 16102,. This document makes reference to those provisions but does not duplicate them.

  • Technical specification
    52 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the conceptual and logical data model and physical encoding formats for geographic databases for Intelligent Transport Systems (ITS) applications and services. It includes a specification of potential contents of such databases (data dictionaries for Features, Attributes and Relationships), a specification of how these contents shall be represented, and of how relevant information about the database itself may be specified (metadata).
The focus of this document is on ITS applications and services and it emphasizes road and road-related information. ITS applications and services, however, also require information in addition to road and road-related information.
EXAMPLE 1    ITS applications and services need information about addressing systems in order to specify locations and/or destinations. Consequently, information about the administrative and postal subdivisions of an area is essential.
EXAMPLE 2    Map display is an important component of ITS applications and services. For proper map display, the inclusion of contextual information such as land and water cover is essential.
EXAMPLE 3    Point-of-Interest (POI) or service information is a key feature of traveller information. It adds value to end-user ITS applications and services.
Typical ITS applications and services targeted by this document are in-vehicle or portable navigation systems, traffic management centres, or services linked with road management systems, including public transport systems.
The Conceptual Data Model has a broader focus than ITS applications and services. It is application independent, allowing for future harmonization of this document with other geographic database standards.

  • Standard
    1077 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    1074 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the application interface in the context of electronic fee collection (EFC) systems using dedicated short-range communication (DSRC). The EFC application interface is the EFC application process interface to the DSRC application layer, as can be seen in Figure 1. This document comprises specifications of: — EFC attributes (i.e. EFC application information) that can also be used for other applications and/or interfaces; — the addressing procedures of EFC attributes and (hardware) components (e.g. integrated circuit(s) card); — EFC application functions, i.e. further qualification of actions by definitions of the concerned services, assignment of associated ActionType values, and content and meaning of action parameters; — the EFC transaction model, which defines the common elements and steps of any EFC transaction; — the behaviour of the interface so as to ensure interoperability on an EFC-DSRC application interface level. This is an interface standard, adhering to the open systems interconnection (OSI) philosophy (see ISO/IEC 7498-1), and it is as such not primarily concerned with the implementation choices to be realized at either side of the interface. This document provides security-specific functionality as place holders (data and functions) to enable the implementation of secure EFC transactions. Yet the specification of the security policy (including specific security algorithms and key management) remains at the discretion and under the control of the EFC operator, and hence is outside the scope of this document.

  • Standard
    121 pages
    English language
    sale 15% off
  • Standard
    129 pages
    French language
    sale 15% off

This document describes the architecture of a secure process flow between a source ITS system and a destination ITS system to provide an ‘incident support information system’ (ISIS) to emergency responders by accessing (with the agreement of the vehicle owners/keepers) data from a crashed vehicle and/or other vehicles, or drones, in the vicinity of the incident.

  • Technical specification
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the conceptual and logical data model in addition to the physical encoding formats for geographic databases for Intelligent Transport Systems (ITS) applications and services. This document includes a specification of potential contents of such databases (data dictionaries for Features, Attributes and Relationships), a specification of how these contents are to be represented, and how relevant information about the database itself can be specified (metadata). This document further defines map data used in automated driving systems, Cooperative-ITS, and Multi-modal transport.
The focus of this document is firstly on emerging ITS applications and services, such as Cooperative-ITS and automated driving systems, and it emphasizes road, lane and relevant information on road and lane. However, ITS applications and services also require other information in addition to road and road-related information, which are provided as external databases to connect with GDF and to complement each other. Highly defined public transport databases, for instance, are indispensable in multi-modal transport applications and services in particular. Thus, this document focuses secondly on an expansion of the specification to connect with externally existing databases. It is particularly designed to connect a Transmodel (EN 12896-1 and EN 12896-2) conformant public transport database.
Typical ITS applications and services targeted by this document are in-vehicle or portable navigation systems, traffic management centres, or services linked with road management systems, including public transport systems.
The conceptual data model specified here has a broader focus than ITS applications and services. It is application independent, allowing for future harmonization of this model with other geographic database standards.

  • Standard
    604 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    601 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines a platform-specific model (PSM) for data exchange, which specifically uses ASN.1 and TCP/UDP (transmission control protocol/user datagram protocol) datagrams which were defined as “DATEX-ASN” in the first edition of this document for AP-DATEX (application profile-data exchange) and other Internet protocol (IP) networks. A PSM is an actual implementation of a platform-independent model (PIM) for exchange. This document specifies the message rules and procedures for communication between different systems for ITS using TCP/UDP datagrams. This document deals mainly with the communication interfaces. It has been designed to meet the unique requirements of intelligent transport systems (ITS). However, it has also been designed in a generic fashion and thus can be used for other data exchanges as well.

  • Standard
    83 pages
    English language
    sale 15% off

This document, based on ISO/TS 19468 Methodology and platform independent models for exchange involving traffic control centres, traffic information centres and service providers, aims to fully specify a platform specific method to implement data exchange among centres based on SOAP, supporting DATEX II, for push pull data delivery and service request/feedback collaborative ITS services.

  • Technical specification
    25 pages
    English language
    sale 10% off
    e-Library read for
    1 day