This document specifies the requirements for the hierarchical taxonomy for specifying operating conditions which enable the definition of an operational design domain (ODD) of an automated driving system (ADS). This document also specifies requirements for the definition format of an ODD using the taxonomy. The ODD comprises specific conditions (which include the static and dynamic attributes) within which an ADS is designed to function. This document is mainly applicable to level 3 and level 4 ADS. An ODD for level 5 ADS is unlimited (i.e. operation is possible everywhere). This document can be used by organizations taking part in developing safety cases for automated vehicles, in particular, for organizations conducting trials, testing and commercial deployment. This document can also be used by manufacturers of level 3/4 ADS to define the ADS’ operating capability. It may also be of interest to insurers, regulators, service providers, national, local and regional governments to enable them to understand possible ADS deployments and capabilities. This document does not cover the basic test procedures for attributes of the ODD. It does not cover the monitoring requirements of the ODD attributes.

  • Standard
    29 pages
    English language
    sale 15% off
  • Draft
    27 pages
    English language
    sale 15% off

This document provides definitions, symbols, mechanical requirements, certification test procedure, electronic subsystem requirements and user’s manual for advanced pedestrian legform impactor (aPLI), a standardized pedestrian legform impactor with an upper mass for pedestrian subsystem testing of road vehicles. It is applicable to impact tests involving: — vehicles of category M1, except vehicles with the maximum mass above 2 500 kg and which are derived from N1 category vehicles and where the driver’s position, R-point, is either forward of the front axle or longitudinally rearwards of the front axle transverse centreline by a maximum of 1 100 mm; — vehicles of category N1, except where the driver’s position, R-point, is either forward of the front axle or longitudinally rearwards of the front axle transverse centreline by a maximum of 1 100 mm; — impacts to the bumper test area as defined by UN R127[1] and UN GTR No.9[2]; — pedestrian subsystem tests involving use of a legform for the purpose of evaluating compliance with vehicle safety standards.

  • Technical specification
    247 pages
    English language
    sale 15% off
  • Draft
    247 pages
    English language
    sale 15% off
  • Draft
    247 pages
    English language
    sale 15% off

This document specifies the whole vehicle test chamber, the vapour sampling assembly and the operating conditions for the determination of volatile organic compounds (VOCs), and carbonyl compounds in vehicle cabin air. There are three measurements performed: one (for VOCs and carbonyl compounds) during the simulation of ambient conditions (ambient mode) at standard conditions of 23 °C - 25 °C with no air exchange; a second only for the measurement of formaldehyde at elevated temperatures (parking mode); and a third for VOCs and carbonyl compounds simulating driving after the vehicle has been parked in the sun starting at elevated temperatures (driving mode). For the simulation of the mean sun irradiation, a fixed irradiation in the whole vehicle test chamber is employed.
The VOC method is valid for measurement of non-polar and slightly polar VOCs in a concentration range of sub-micrograms per cubic metre up to several milligrams per cubic metre. Using the principles specified in this method, some semi-volatile organic compounds (SVOC) can also be analysed. Compatible compounds are those which can be trapped and released from the Tenax TA®[1] sorbent tubes described in ISO 16000‑6, which includes VOCs ranging in volatility from n-C6 to n-C16.
The sampling and analysis procedure for formaldehyde and other carbonyl compounds is performed by collecting air on to cartridges coated with 2,4-dinitrophenylhydrazine (DNPH) and subsequent analysis by high performance liquid chromatography (HPLC) with detection by ultraviolet absorption. Formaldehyde and other carbonyl compounds can be determined in the approximate concentration range 1 µg/m3 to 1 mg/m3.
The method is valid for passenger cars, as defined in ECE-TRANS-WP.29/1045.
This document gives guidelines for:
a) transport and storage of the test vehicles until the start of the test;
b) conditioning for the surroundings of the test vehicle and the test vehicle itself as well as the whole vehicle test chamber;
c) conditioning of the test vehicle prior to measurements;
d) simulation of ambient air conditions (ambient mode);
e) formaldehyde sampling at elevated temperatures (parking mode);
f) simulation of driving after the test vehicle has been parked in the sun (driving mode).
  
[1] Tenax TA® is the trade name of a product supplied by Buchem. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used if they can be shown to lead to the same results.

  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    29 pages
    English language
    sale 15% off
  • Draft
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    29 pages
    English language
    sale 15% off

This document provides definitions, symbols and injury probability functions (IPFs) for the thigh, leg and knee intended to be used with the advanced pedestrian legform impactor (aPLI), a standardized pedestrian legform impactor with an upper mass for pedestrian subsystem testing of road vehicles. They are applicable to impact tests using the aPLI at 11,1 m/s involving: — vehicles of category M1, except vehicles with a maximum mass above 2 500 kg and which are derived from N1 category vehicles and where the driver’s position, the R-point, is either forward of the front axle or longitudinally rearwards of the front axle transverse centreline by a maximum of 1 100 mm; — vehicles of category N1, except where the driver’s position, the R-point, is either forward of the front axle or longitudinally rearwards of the front axle transverse centreline by maximum of 1 100 mm; — impacts to the bumper test area defined by References [1] and [2]; — pedestrian subsystem tests involving use of a legform for the purpose of evaluating compliance with vehicle safety standards.

  • Technical specification
    157 pages
    English language
    sale 15% off
  • Draft
    155 pages
    English language
    sale 15% off
  • Draft
    155 pages
    English language
    sale 15% off

This document specifies the requirements for the provisions of personnel dealing with the operation on natural gases (NG) fuelled vehicles in order to demonstrate their competence. This document specifies the minimum requirements for training and qualification of personnel according to the level of safety required by the activity.

  • Standard
    30 pages
    English language
    sale 15% off
  • Draft
    30 pages
    English language
    sale 15% off
  • Draft
    30 pages
    English language
    sale 15% off

This document specifies requirements, procedures and message formats for controlling and monitoring of test targets, used for testing of active safety functions and autonomous vehicles. The document specifies functionality and messaging for monitoring and controlling of test objects by a control centre facilitating an interoperable test object environment. This document defines a communication protocol which allows for the control centre to safely execute tests using test objects from multiple vendors. This document does not specify the internal architecture of the test object nor control centre. This document does not specify how testing of the vehicles shall be performed.

  • Technical specification
    102 pages
    English language
    sale 15% off
  • Draft
    102 pages
    English language
    sale 15% off
  • Draft
    102 pages
    English language
    sale 15% off

This document specifies requirements for mechanical components, specifications and validation tests for the WorldSID 50th percentile side-impact dummy, a standardized anthropomorphic dummy for near-side-impact tests of road vehicles.

  • Standard
    54 pages
    English language
    sale 15% off

This document specifies an engineering method for measuring the noise emitted by road vehicles of categories M and N under typical urban traffic conditions. It excludes vehicles of category L1 and L2, which are covered by ISO 9645, and vehicles of category L3, L4, and L5, which are covered by ISO 362‑2. The specifications are intended to reproduce the level of noise generated by the principal noise sources during normal driving in urban traffic (see Annex A). The method is designed to meet the requirements of simplicity as far as they are consistent with reproducibility of results under the operating conditions of the vehicle. The test method requires an acoustical environment that is obtained only in an extensive open space. Such conditions are usually provided for — type approval measurements of a vehicle, — measurements at the manufacturing stage, and — measurements at official testing stations. NOTE 1 The results obtained by this method give an objective measure of the noise emitted under the specified conditions of test. It is necessary to consider the fact that the subjective appraisal of the noise annoyance of different classes of motor vehicles is not simply related to the indications of a sound measurement system. As annoyance is strongly related to personal human perception, physiological human conditions, culture, and environmental conditions, there is a large variation and it is, therefore, not useful as a parameter to describe a specific vehicle condition. NOTE 2 Spot checks of vehicles chosen at random are rarely made in an ideal acoustical environment. If measurements are carried out on the road in an acoustical environment that does not fulfil the requirements stated in this document, the results obtained can deviate appreciably from the results obtained using the specified conditions.

  • Standard
    75 pages
    English language
    sale 15% off

This document specifies mechanical requirements for sensors and in-dummy data acquisition systems (DAS) of the WorldSID 50th percentile side-impact dummy, a standardized anthropomorphic dummy for near-side-impact tests of road vehicles.

  • Standard
    24 pages
    English language
    sale 15% off

This document provides guidance for a scenario-based safety evaluation framework for automated driving systems (ADSs). The framework elaborates a scenario-based safety evaluation process that is applied during product development. The guidance for the framework is intended to be applied to ADS defined in ISO/SAE PAS 22736 and to vehicle categories 1 and 2 according to Reference [10]. This scenario-based safety evaluation framework for ADS is applicable for limited access highways. This document does not address safety-related issues involving misuse, human machine interface and cybersecurity. This document does not address non-safety related issues involving comfort, energy efficiency or traffic flow efficiency.

  • Standard
    81 pages
    English language
    sale 15% off

The document defines terms in the context of test scenarios for automated driving systems (ADS). The document is applicable to ADS of Level 3 and above defined in ISO/SAE PAS 22736.

  • Standard
    10 pages
    English language
    sale 15% off

This document specifies correction procedures for the effect of temperature on vehicle noise emission, as influenced by the tyre/road noise contribution. Temperatures considered are road and ambient air temperatures. The noise emission for which this document is applicable is measured by means of ISO 11819-1, or similar methods such as the American methods SIP and CTIM specified in References [3][4]. It is also applicable to other pass-by measurements conducted without acceleration, such as when testing tyres and vehicles on test tracks with ISO 10844[1] reference surfaces; however, given that tyre/road noise is dominant. Measurement results obtained at a certain temperature, which may vary over a wide range, are normalized to a designated reference temperature (20 °C) using a correction procedure specified in this document.

  • Technical specification
    18 pages
    English language
    sale 15% off

This document provides the current road equipment suppliers’ visions and their associated short term and medium-term priority deployment scenarios. Potential functional/operational standardization issues enabling a safe interaction of road equipment/infrastructure with automated vehicles in a consistent and interoperable way are identified. This is paving the way for a deeper analysis of standardization actions which are necessary for the deployment of priority short-time applications and use cases.
This deeper analysis will be done at the level of each priority application/use case by identifying existing standards to be used, standards gaps/overlaps and new standards to be developed to support this deployment.
The release 1 is focusing on short-term (2022 to 2027) and medium-term deployment. Further releases will update this initial vision according to short term deployment reality.
The objectives of this document are to:
-   Support the TC 226 and its WG12 work through the development of a common vision of the roles and responsibilities of a modern, smart road infrastructure in the context of the automated vehicle deployment from SAE level 1 to SAE level 5. The roles and responsibilities of the road infrastructure are related to its level of intelligence provided by functions and data being managed at its level.
-   Promote the road equipment suppliers and partners visions associated to their short-term and medium- term priorities to European SDOs and European Union with the goal of having available relevant, consistent standards sets enabling the identified priority deployment scenarios.
NOTE   Road equipment/infrastructure includes the physical reality as its digital representation (digital twin). Both need to present a real time consistency.

  • Technical report
    56 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    56 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This European Standard specifies requirements for the designations and descriptions that should be used in public or commercial communications, labels or product descriptions when leather is used in upholstered furniture and automotive interior applications.
The designation or description of leather in footwear, leather goods and leather clothing including gloves are not covered by this document.

  • Standard
    8 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    8 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides the vocabulary, symbols, and rationale used in all parts of the ISO 15830 series for the WorldSID 50th percentile side-impact dummy, a standardized anthropomorphic dummy for near-side-impact tests of road vehicles.

  • Standard
    111 pages
    English language
    sale 15% off

This document provides the current road equipment suppliers’ visions and their associated short term and medium-term priority deployment scenarios. Potential functional/operational standardization issues enabling a safe interaction of road equipment/infrastructure with automated vehicles in a consistent and interoperable way are identified. This is paving the way for a deeper analysis of standardization actions which are necessary for the deployment of priority short-time applications and use cases.
This deeper analysis will be done at the level of each priority application/use case by identifying existing standards to be used, standards gaps/overlaps and new standards to be developed to support this deployment.
The release 1 is focusing on short-term (2022 to 2027) and medium-term deployment. Further releases will update this initial vision according to short term deployment reality.
The objectives of this document are to:
-   Support the TC 226 and its WG12 work through the development of a common vision of the roles and responsibilities of a modern, smart road infrastructure in the context of the automated vehicle deployment from SAE level 1 to SAE level 5. The roles and responsibilities of the road infrastructure are related to its level of intelligence provided by functions and data being managed at its level.
-   Promote the road equipment suppliers and partners visions associated to their short-term and medium- term priorities to European SDOs and European Union with the goal of having available relevant, consistent standards sets enabling the identified priority deployment scenarios.
NOTE   Road equipment/infrastructure includes the physical reality as its digital representation (digital twin). Both need to present a real time consistency.

  • Technical report
    56 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    56 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document establishes the location of drivers' eyes inside a vehicle. Elliptical (eyellipse) models in three dimensions are used to represent tangent cut-off percentiles of driver's eye locations. Procedures are provided to construct 95th and 99th percentile tangent cut-off eyellipses for a 50/50 gender mix, adult user population. Neck pivot (P) points are defined to establish specific left and right eye points for direct and indirect viewing tasks described in SAE J1050. These P points are defined only for adjustable seat eyellipses. This document applies to Class A vehicles (passenger cars, multipurpose passenger vehicles and light trucks) as defined in SAE J1100. It also applies to Class B vehicles (heavy trucks).

  • Standard
    35 pages
    English language
    sale 15% off

This document defines the contents and the layout of the rescue sheet providing necessary and useful information about a vehicle involved in an accident to support the rescue team extricating the occupants as fast and as safe as possible. This document is applicable to passenger cars and light commercial vehicles according to ISO 3833. The identification of the vehicle and of the model through a database using the license plate, the VIN number, an automatic emergency call system (e.g. eCall) or other identifiers (e.g. bar code or QR code) is not covered by this document. The rescue process or the process of handling the rescue sheets is not covered by this document. This document does not cover information related to education and training for rescue teams.

  • Standard
    15 pages
    English language
    sale 15% off
  • Standard
    17 pages
    French language
    sale 15% off

This document specifies the essential characteristics of a test track surface intended to be used for measuring rolling sound emission of vehicles and their tyres. The surface design given in this document — produces consistent levels of tyre or road sound emission under a wide range of operating conditions including those appropriate to vehicle sound testing, — minimizes inter-site variation, — limits absorption of the vehicle sound sources, and — is consistent with road-building practice.

  • Standard
    24 pages
    English language
    sale 15% off
  • Draft
    24 pages
    English language
    sale 15% off

This Standard specifies the safety requisites requirements and their verification for the design and building  of machines (see the definition in point 3.2) for mounting and demounting tyres on the vehicles listed below and identified according to the international categories M1, M2, N1, O1, O2, L4 and L5:
a) cars
b) buses
c) lorries
d) motor-vehicles for specific or special transport
e) mobile homes
f) cargo trailers
g) car trailers
h) motorised quadricycles
i) motor vehicles
j) mopeds
k) agricultural machines (if the wheel/tyre dimensions are compatible with the maximum dimensions indicated in the tyre changer user instructions)
The vehicles listed in points a) to f) must have an overall full-load mass no greater than 3.5 t.
These machines are designed to ensure the tyre is correctly fitted on the wheel in safe conditions. The standard describes how to eliminate or reduce the risks resulting from the foreseen use (or improper but reasonably foreseeable use) of these machines by the operator during normal operation and service. In addition, it specifies the type of information that the manufacturer must supply with regards to safe working procedures.
The Standard describes all the significant hazards (as listed in Table 1) and the danger situations and events relating to these machines.
This Standard does not apply to hazards regarding maintenance or repairs carried out by professional maintenance personnel.

  • Standard
    50 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    50 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides guidelines for extending the definition of equivalent temperature to predictive purposes and specifies a standard prediction method for the assessment of thermal comfort in vehicles using numerical calculations. Specifically, this document sets forth a simulated numerical manikin as a viable alternative to the thermal manikin for the purpose of calculating the equivalent temperature.

  • Standard
    44 pages
    English language
    sale 15% off
  • Draft
    44 pages
    English language
    sale 15% off

This document specifies the whole vehicle test chamber, the vapour sampling assembly and the operating conditions for the determination of volatile organic compounds (VOCs), and carbonyl compounds in vehicle cabin air. There are three measurements performed: one (for VOCs and carbonyl compounds) during the simulation of ambient conditions (ambient mode) at standard conditions of 23 °C - 25 °C with no air exchange; a second only for the measurement of formaldehyde at elevated temperatures (parking mode); and a third for VOCs and carbonyl compounds simulating driving after the vehicle has been parked in the sun starting at elevated temperatures (driving mode). For the simulation of the mean sun irradiation, a fixed irradiation in the whole vehicle test chamber is employed. The VOC method is valid for measurement of non-polar and slightly polar VOCs in a concentration range of sub-micrograms per cubic metre up to several milligrams per cubic metre. Using the principles specified in this method, some semi-volatile organic compounds (SVOC) can also be analysed. Compatible compounds are those which can be trapped and released from the Tenax TA®[1] sorbent tubes described in ISO 16000‑6, which includes VOCs ranging in volatility from n-C6 to n-C16. The sampling and analysis procedure for formaldehyde and other carbonyl compounds is performed by collecting air on to cartridges coated with 2,4-dinitrophenylhydrazine (DNPH) and subsequent analysis by high performance liquid chromatography (HPLC) with detection by ultraviolet absorption. Formaldehyde and other carbonyl compounds can be determined in the approximate concentration range 1 µg/m3 to 1 mg/m3. The method is valid for passenger cars, as defined in ECE-TRANS-WP.29/1045. This document gives guidelines for: a) transport and storage of the test vehicles until the start of the test; b) conditioning for the surroundings of the test vehicle and the test vehicle itself as well as the whole vehicle test chamber; c) conditioning of the test vehicle prior to measurements; d) simulation of ambient air conditions (ambient mode); e) formaldehyde sampling at elevated temperatures (parking mode); f) simulation of driving after the test vehicle has been parked in the sun (driving mode). [1] Tenax TA® is the trade name of a product supplied by Buchem. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used if they can be shown to lead to the same results.

  • Standard
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    29 pages
    English language
    sale 15% off
  • Draft
    33 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    29 pages
    English language
    sale 15% off

This document specifies a test procedure for assessing the scratch resistance of organic paint coatings, in particular paint coatings used in the automotive industry (i.e. for assessing their car-wash resistance). Machine-based washing is simulated in the laboratory environment using a rotating brush and synthetic dirt. The test conditions have been designed to be as close as possible to the real conditions in a car-wash. If the test parameters are suitably chosen, the method can also be used for testing protective plastics films and plastics components.

  • Standard
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides requirements for operation of vehicles that use compressed natural gas (CNG) as a fuel for propulsion, covering various aspects of NGV workshops including activities, risk management, planning, personnel, layout, systems and operations. It provides requirements regarding the management of NGVs including use, parking, fuelling for commissioning, inspection, installation, repair and maintenance, disposal, transportation and documentation.
This document is applicable to the management of CNG vehicles with a fuel system pressure of 20 MPa (200 bar) at 15 °C. This document can also be applied to vehicles with higher fuel system pressures, taking into account additional safety aspects.
This document also applies to servicing, repair and maintenance of NGVs when work is not performed on the gas fuel system.

  • Standard
    31 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    34 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document describes and specifies the whole vehicle test chamber, the vapour sampling assembly and the operating conditions for the determination of volatile organic compounds (VOCs; for more information see Annex E), and carbonyl compounds in vehicle cabin air. There are three measurements performed: one (for VOCs and carbonyl compounds) during the simulation of ambient conditions (ambient mode) at standard conditions of 23 °C with no air exchange; a second only for the measurement of formaldehyde at elevated temperatures (parking mode); and a third for VOCs and carbonyl compounds simulating driving after the vehicle has been parked in the sun starting at elevated temperatures (driving mode). For the simulation of the mean sun irradiation, fixed irradiation in the whole vehicle test chamber is employed.
The VOC method is valid for measurement of non-polar and slightly polar VOCs in a concentration range of sub-micrograms per cubic metre up to several milligrams per cubic metre. Using the principles described in this method, some semi-volatile organic compounds (SVOC) can also be analysed. Compatible compounds are those which can be trapped and released from the Tenax TA®1) sorbent tubes described in ISO 16000‑6, which includes VOCs ranging in volatility from n-C6 to n-C16.
The sampling and analysis procedure for formaldehyde and other carbonyl compounds is performed by collecting air on to cartridges coated with 2,4-dinitrophenylhydrazine (DNPH) and subsequent analysis by high performance liquid chromatography (HPLC) with detection by ultraviolet absorption. Formaldehyde and other carbonyl compounds can be determined in the approximate concentration range 1Â ÎĽg/m3 to 1Â mg/m3.
This method applicable to trucks and buses, as defined in ISOÂ 3833:1977 3.1.1 to 3.1.6.
This document describes:
a) Transport and storage of the test vehicle until the start of the test.
b) Conditioning of the surroundings of the test vehicle and the test vehicle itself as well as the whole vehicle test chamber.
c) Conditioning of the test vehicle prior to measurements.
d) Simulation of ambient air conditions (ambient mode).
e) Formaldehyde sampling at elevated temperatures (parking mode).
f) Simulation of driving after the test vehicle has been parked in the sun (driving mode).
1)Tenax TA® is the trade name of a product supplied by Buchem. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used if they can be shown to lead to the same results.

  • Standard
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    19 pages
    English language
    sale 15% off
  • Draft
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    19 pages
    English language
    sale 15% off

This document defines the measurement coordinate systems and presents the protocol to determine the sensor offsets to the chosen coordinate system. Finally, the method is presented how to process the sensor spherical coordinate system data to calculate the position of a dummy feature in three-dimensional space in the defined local orthogonal coordinate system.

  • Technical specification
    52 pages
    English language
    sale 15% off
  • Draft
    52 pages
    English language
    sale 15% off

This document establishes a procedure to calibrate 1D displacement transducers with nearly linear transfer functions. This procedure is tailored to the needs of sensors used in crash tests. The calibration is carried out with the sensor disassembled from the dummy or test system. The procedure is valid for sensors with analogue as well as digital output.

  • Technical specification
    6 pages
    English language
    sale 15% off
  • Draft
    6 pages
    English language
    sale 15% off

This document describes the state-of-the-art of prospective methods for assessing the safety performance of vehicle-integrated active safety technologies by virtual simulation. The document describes how prospective assessment of vehicle-integrated technologies provides a prediction on how advanced vehicle safety technology will perform on the roads in real traffic. The focus is on the assessment of the technology as whole and not of single components of the technology (e.g. sensors). The described assessment approach is limited to “vehicle-integrated” technology and does not consider technologies operating off-board. The virtual simulation method per se is not limited to a certain vehicle type. The assessment approach discussed in this document focuses accident avoidance and the technology’s contribution to the mitigation of the consequences. Safety technologies that act in the in-crash or the post-crash phase are not explicitly addressed by the method, although the output from prospective assessments of crash avoidance technologies can be considered as an important input to determine the overall consequences of a crash. The method is intended as an overall reference for safety performance assessment studies of pre-crash technologies by virtual simulation. The method can be applied at all stages of technology development and in assessment after the market introduction, in which a wide range of stakeholders (manufactures, insurer, governmental organisation, consumer rating organisation) could apply the method.

  • Technical report
    43 pages
    English language
    sale 15% off
  • Draft
    42 pages
    English language
    sale 15% off

This document describes and specifies the whole vehicle test chamber, the vapour sampling assembly and the operating conditions for the determination of volatile organic compounds (VOCs; for more information see Annex E), and carbonyl compounds in vehicle cabin air. There are three measurements performed: one (for VOCs and carbonyl compounds) during the simulation of ambient conditions (ambient mode) at standard conditions of 23 °C with no air exchange; a second only for the measurement of formaldehyde at elevated temperatures (parking mode); and a third for VOCs and carbonyl compounds simulating driving after the vehicle has been parked in the sun starting at elevated temperatures (driving mode). For the simulation of the mean sun irradiation, fixed irradiation in the whole vehicle test chamber is employed. The VOC method is valid for measurement of non-polar and slightly polar VOCs in a concentration range of sub-micrograms per cubic metre up to several milligrams per cubic metre. Using the principles described in this method, some semi-volatile organic compounds (SVOC) can also be analysed. Compatible compounds are those which can be trapped and released from the Tenax TA®1) sorbent tubes described in ISO 16000‑6, which includes VOCs ranging in volatility from n-C6 to n-C16. The sampling and analysis procedure for formaldehyde and other carbonyl compounds is performed by collecting air on to cartridges coated with 2,4-dinitrophenylhydrazine (DNPH) and subsequent analysis by high performance liquid chromatography (HPLC) with detection by ultraviolet absorption. Formaldehyde and other carbonyl compounds can be determined in the approximate concentration range 1 μg/m3 to 1 mg/m3. This method applicable to trucks and buses, as defined in ISO 3833:1977 3.1.1 to 3.1.6. This document describes: a) Transport and storage of the test vehicle until the start of the test. b) Conditioning of the surroundings of the test vehicle and the test vehicle itself as well as the whole vehicle test chamber. c) Conditioning of the test vehicle prior to measurements. d) Simulation of ambient air conditions (ambient mode). e) Formaldehyde sampling at elevated temperatures (parking mode). f) Simulation of driving after the test vehicle has been parked in the sun (driving mode). 1)Tenax TA® is the trade name of a product supplied by Buchem. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used if they can be shown to lead to the same results.

  • Standard
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    19 pages
    English language
    sale 15% off
  • Draft
    24 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    19 pages
    English language
    sale 15% off

This document specifies performance requirements for surrogate targets used to assess the system detection and performance of active safety systems. This document specifies the properties of an omni-directional multi-purpose vehicle target for assessment of interaction in a variety of traffic scenarios. This document specifies the properties of a vehicle target that will allow it to represent a passenger vehicle in terms of size, shape, reflection properties, etc. for testing purposes. This document addresses the detection requirements for a vehicle target in terms of sensing technologies commonly in use at the time of publication of this document, and where possible, anticipates future sensing technologies. It also addresses methodologies to verify the target response properties to these sensors, as well as performance requirements for the target carrier. The vehicle targets specified in this document reflect passenger cars and, in particular, the smaller and more common B and C segment cars. This document does not address the test procedures in terms of speeds, positions, or timing of events. Performance criteria for the active safety system are also not addressed.

  • Standard
    51 pages
    English language
    sale 15% off
  • Draft
    49 pages
    English language
    sale 15% off

This document specifies test methods and performance metrics to evaluate the behaviour of a vehicle equipped with lane keeping assistance system (LKAS, see 3.2). For this purpose, variables relevant to vehicle dynamics as well as controllability of a vehicle with LKAS and their measurement methods are defined. A system requiring a driver intervention is excluded from the scope. This document applies to the vehicles of M1 category.

  • Standard
    23 pages
    English language
    sale 15% off
  • Draft
    22 pages
    English language
    sale 15% off

This Standard specifies the safety requisites requirements and their verification for the design and building  of machines (see the definition in point 3.2) for mounting and demounting tyres on the vehicles listed below and identified according to the international categories M1, M2, N1, O1, O2, L4 and L5:
a) cars
b) buses
c) lorries
d) motor-vehicles for specific or special transport
e) mobile homes
f) cargo trailers
g) car trailers
h) motorised quadricycles
i) motor vehicles
j) mopeds
k) agricultural machines (if the wheel/tyre dimensions are compatible with the maximum dimensions indicated in the tyre changer user instructions)
The vehicles listed in points a) to f) must have an overall full-load mass no greater than 3.5 t.
These machines are designed to ensure the tyre is correctly fitted on the wheel in safe conditions. The standard describes how to eliminate or reduce the risks resulting from the foreseen use (or improper but reasonably foreseeable use) of these machines by the operator during normal operation and service. In addition, it specifies the type of information that the manufacturer must supply with regards to safe working procedures.
The Standard describes all the significant hazards (as listed in Table 1) and the danger situations and events relating to these machines.
This Standard does not apply to hazards regarding maintenance or repairs carried out by professional maintenance personnel.

  • Standard
    50 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    50 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    46 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a test procedure for assessing the scratch resistance of organic paint
coatings, in particular paint coatings used in the automotive industry (i.e. for assessing their carwash
resistance). Machine-based washing is simulated in the laboratory environment using a rotating
brush and synthetic dirt. The test conditions have been designed to be as close as possible to the real
conditions in a car-wash. If the test parameters are suitably chosen, the method can also be used for
testing protective plastics films and plastics components

  • Standard
    17 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document establishes an adequate procedure to determine crosstalk values in order to improve comparability of measurement results between testing laboratories and to enable a load cell performance rating in accordance to the crosstalk specification for transducers in vehicle crash testing given in ISO 6487, SAE-J211-1 and SAE J2570.

  • Standard
    6 pages
    English language
    sale 15% off
  • Draft
    6 pages
    English language
    sale 15% off

This document describes steps for developing and validating automated driving systems based on basic safety principles derived from worldwide applicable publications. It considers safety- and cybersecurity-by-design, as well as verification and validation methods for automated driving systems focused on vehicles with level 3 and level 4 features according to SAE J3016:2018. In addition, it outlines cybersecurity considerations intersecting with objectives for safety of automated driving systems.

  • Technical report
    111 pages
    English language
    sale 15% off
  • Draft
    110 pages
    English language
    sale 15% off

This document specifies the properties and performance requirements of a bicyclist target (BT) that represents a human bicyclist in terms of shape, movement, reflection properties, etc. for testing purposes. The BT is used to assess the system detection and activation performance of active safety systems. This document establishes the detection requirements for a BT in terms of sensing technologies commonly in use at the time of publication of this document, and where possible, anticipated future sensing technologies. It also establishes methodologies to verify the target response properties to these sensors, as well as some performance requirements for the target carrier. The BT according to this document is also representative for electrically assisted pedal bicycles (pedal electric cycle, pedelec). This document does not address the test procedures in terms of speeds, positions, or timing of events. Performance criteria for the active safety system being tested are also not addressed.

  • Standard
    47 pages
    English language
    sale 15% off
  • Draft
    47 pages
    English language
    sale 15% off

This document provides the specifications and procedures for using the H-point machine (HPM)[1] to audit vehicle seating positions. The HPM is a physical tool used to establish key reference points and measurements in a vehicle. The H-point design tool (HPD) is a simplified computer-aided design (CAD)[2] version of the HPM, which can be used in conjunction with the HPM to take the optional measurements specified in this document, or used independently during product design. These H-point devices provide a method for reliable layout and measurement of occupant seating compartments or seats. This document specifies the procedures for installing the H-point machine (HPM) and using the HPM to audit (verify) key reference points and measurements in a vehicle. The devices are intended for application at designated seating positions. They are not to be construed as tools that measure or indicate occupant capabilities or comfort. They are not intended for use in defining or assessing temporary seating, such as folding jump seats. [1] All references to H-point machine or HPM in this document refer to the SAE J4002 H-point machine (HPM-II), unless otherwise noted. [2] CAD has come to encompass any software system or approach to automotive design and development, and is often used to refer to CAE (computer-assisted engineering) and CAM (computer-assisted manufacturing) software systems as well.

  • Standard
    67 pages
    English language
    sale 15% off
  • Draft
    68 pages
    English language
    sale 15% off

This document specifies a test procedure for assessing the scratch resistance of organic paint coatings, in particular paint coatings used in the automotive industry (i.e. for assessing their car-wash resistance). Machine-based washing is simulated in the laboratory environment using a rotating brush and synthetic dirt. The test conditions have been designed to be as close as possible to the real conditions in a car-wash. If the test parameters are suitably chosen, the method can also be used for testing protective plastics films and plastics components.

  • Standard
    9 pages
    English language
    sale 15% off
  • Standard
    9 pages
    French language
    sale 15% off

This document focuses on system-initiated and human-initiated transitions (Clause 6) from a higher level to a lower level of automated driving. Human factors and system factors that can influence takeover performance are included (Clauses 7 and 8). Although some are still under investigation, there is a need to appropriately set these factors as variables to better understand their effects or to better control/eliminate their influence. This approach will aid research design by ensuring that important factors are considered and support consistency across studies enabling meaningful comparisons of findings. This document also includes information on considerations in test scenario design (Clause 9), common measures for human takeover performance (Clause 10) and considerations in choosing a testing environment (Clause 11) to help readers design experiments comparable to other studies.

  • Technical report
    44 pages
    English language
    sale 15% off

This document introduces basic common underlying concepts related to driver performance and state in the context of automated driving. The concepts in this document are applicable to all levels of automated driving functions that require a human/driver to be engaged or fallback-ready (SAE level 1, 2 and 3). It can also be used with levels that enable a driver to resume manual control of the vehicle (a compatible feature for SAE levels 1 to 5). Common underlying concepts can be applicable for human factors assessment/evaluations using driving simulators, tests on restricted roadways (e.g. test tracks) or tests on public roads. The information applies to all vehicle categories. This document contains a mixture of information where technical consensus supports such guidance, as well as discussion of those areas where further research is required to support technical consensus. These common underlying concepts can be also useful for product descriptions and owner manuals. The contents in this document are informative, rather than normative, in nature.

  • Technical report
    24 pages
    English language
    sale 15% off

This document specifies a large bag sampling method for measuring volatile organic compounds (VOCs), formaldehyde and other carbonyl compounds which are emitted from vehicle interior parts into the air inside road vehicles. This method is intended for evaluation of large new vehicle interior parts, and complete assemblies. This is a screening method to compare similar car components under similar test conditions on a routine basis. Evaluating VOC emissions of vehicle interior parts is an important aspect of the vehicle indoor air quality. This document is complementary to existing standards and provides test laboratories and the manufacturing industry with a cost-effective evaluation of vehicle interior parts. This method is only applicable to newly manufactured vehicle parts. This method is applicable to all types of vehicles, and vehicle products which are used as parts in the interior of vehicles.

  • Standard
    15 pages
    English language
    sale 15% off
  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the selection, preparation, conditioning, packaging, labelling, transportation
and storage for materials and components for, but not limited to, volatile organic compound (VOC)
testing, fogging testing and odour testing.
It pays special attention to materials sensitive to contamination and/or rapid volatilization of emissions
in order to achieve repeatable and accurate test results.

  • Standard
    9 pages
    English language
    sale 15% off
  • Standard
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Standard
    10 pages
    French language
    sale 15% off
  • Draft
    14 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies a test procedure, environment and instrumentation for measuring the exterior sound pressure levels from road vehicles under stationary conditions, providing a continuous measure of the sound pressure level over a range of engine speeds. This document applies only to road vehicles of categories L, M, and N equipped with internal combustion engines. Vehicles where an internal combustion engine cannot operate when the vehicle is at stationary conditions are outside the scope of this document. The method is designed to meet the requirements of simplicity as far as they are consistent with reproducibility of results under the operating conditions of the vehicle. It is within the scope of this document to measure the stationary A-weighted sound pressure level during — type approval measurements of vehicle; — measurements at the manufacturing stage; — measurements at official testing stations; — measurements at roadside testing. This document specifices a test method to determine a reference sound level which is unique for the vehicle and therefore not suitable to compare against a general limit, as test condition, microphone condition location relative to the sound sources can vary significantly. The test conditions in proximity and at engine speeds significantly higher compared to real operation conditions in traffic are deliberately chosen to enable in-use tests at higher background conditions, which are typical for road-side checks. Technical background information is given in Annex A.

  • Standard
    18 pages
    English language
    sale 15% off
  • Standard
    18 pages
    French language
    sale 15% off

This document presents a simple means for the exchange of multimedia data on impact tests between different laboratories. A format has been developed which defines a directory structure and the exchange information as ASCII files. Related electronic documents are available on the ISO website.

  • Technical specification
    9 pages
    English language
    sale 15% off

This document specifies a large bag sampling method for measuring volatile organic compounds (VOCs), formaldehyde and other carbonyl compounds which are emitted from vehicle interior parts into the air inside road vehicles. This method is intended for evaluation of large new vehicle interior parts, and complete assemblies. This is a screening method to compare similar car components under similar test conditions on a routine basis. Evaluating VOC emissions of vehicle interior parts is an important aspect of the vehicle indoor air quality. This document is complementary to existing standards and provides test laboratories and the manufacturing industry with a cost-effective evaluation of vehicle interior parts. This method is only applicable to newly manufactured vehicle parts. This method is applicable to all types of vehicles, and vehicle products which are used as parts in the interior of vehicles.

  • Standard
    15 pages
    English language
    sale 15% off
  • Standard
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    20 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document defines the template layout of the Emergency Response Guide (ERG) providing necessary and useful information about a vehicle involved in an accident to support the rescue team rescuing the occupants as quickly and as safely as possible, and to promote the correct action with respect to the vehicle technology concerned. The ERG also provides in-depth information related to fire, submersion and leakage of fluids. The ERG contains crucial and in-depth information linked to the rescue sheet (ISO 17840 parts 1 and 2), to inform training and development of rescue procedures. The headings/contents of the rescue sheet and the ERG information are aligned with each other, i.e. the ERG information works as an extension of the related rescue sheet. The template defines the layout and general contents, for ease of use by first and second responders. The guide can be communicated in paper or electronic format. The ERG template follows in principle a flowchart for the main actions of the first and second responders arriving at an accident scene or performing towing and other activities afterwards. The ERG can be related to a specific vehicle model, to a family of similar vehicle models, or to a certain type of vehicle technology in general. The ERG template provides a format for filling in the following necessary and useful emergency information: — relevant information for a vehicle involved in a traffic accident (including immobilisation, disabling of hazards, access to occupants, shut-off procedures, handling of stored propulsion energy); — information in case of fire or submersion; and — information regarding towing, transportation and storage. This document is applicable to passenger cars, buses, coaches, light and heavy commercial vehicles according to ISO 3833. The proposed template can be beneficial for use also for other types of vehicles (e.g. trains, trams, airplanes), although this is out of the scope of this document. The identification of the vehicle and of the model via a database using the license plate, the VIN number, an automatic emergency call system (e.g. e-Call) system or other identifiers (e.g. bar code or QR code) is not covered by this document. The rescue procedure or the process of handling the ERG is not covered by this document.

  • Standard
    60 pages
    English language
    sale 15% off
  • Standard
    63 pages
    French language
    sale 15% off

This document defines the content and the layout of the rescue sheet providing necessary and useful information about a vehicle involved in an accident/incident to support the rescue team in rescuing the vehicle occupants as quickly and safely as possible. This document is applicable to buses, coaches and heavy commercial vehicles according to ISO 3833. This document could be applicable also to other types of vehicles using similar technologies. The contents and layout considers that the rescue sheet has to be easy to use by rescue teams over the world and can be communicated in paper or electronic format. Applicable pictograms for use in the rescue sheet are provided in ISO 17840-3. Information related to propulsion energy identification is given in ISO 17840-4. The identification of the vehicle and of the model via a database using the license plate, the VIN number, an automatic emergency call system (e.g. e-Call) system or other identifiers (e.g. bar code or QR code) is not covered by this document. The rescue process or the process of handling the rescue sheets is not covered by this document. NOTE The template for structuring of more in-depth rescue information is given in ISO 17840-3.

  • Standard
    16 pages
    English language
    sale 15% off
  • Standard
    16 pages
    French language
    sale 15% off

This document establishes a procedure to calibrate IR-TRACC displacement transducers. Like all other sensors used on dummies, calibration is required. The calibration is carried out with the sensor disassembled from the dummy. The procedure is valid for sensors with analogue as well as digital output.

  • Technical specification
    19 pages
    English language
    sale 15% off

This document specifies performance requirements for surrogate targets used to assess the system detection and activation performance of active safety systems. This document specifies the properties of pedestrian targets that represent an adult or a child in terms of size, shape, reflection properties, etc. for testing purposes. The document addresses the detection requirements for a pedestrian target in terms of sensing technologies commonly in use at the time of publication of this document, and where possible, anticipated future sensing technologies. It also addresses methodologies to verify the target response properties to these sensors, as well as some performance requirements for the target carrier. This document does not address the test procedures in terms of speeds, positions, or timing of events. Performance criteria for the active safety system being evaluated are also not addressed. A related test procedure using pedestrian targets according to this document can be found in ISO 19237.

  • Standard
    33 pages
    English language
    sale 15% off