Basic standard for the in-situ measurement of electromagnetic field strength related to human exposure in the vicinity of base stations

This European Standard specifies in the vicinity of base station as defined in 3.2 the measurement methods, the measurement systems and the post processing that shall be used to determine in-situ the electromagnetic field for human exposure assessment in the frequency range 100 kHz to 300 GHz.

Grundnorm für die Messung der elektromagnetischen Feldstärke am Aufstell- und Betriebsort von Basisstationen in Bezug auf die Sicherheit von in ihrer Nähe befindlichen Personen

Diese Grundnorm legt die Messverfahren, die Messsysteme sowie die Nachbearbeitung für Messungen in der Nähe von Basisstationen, wie sie in 3.2 festgelegt sind, fest, um damit die elektromagnetischen Felder am Aufstell- und Betriebsort der Basisstationen im Hinblick auf die Beurteilung der Sicherheit von Personen in elektromagnetischen Feldern im Frequenzbereich 100 kHz bis 300 GHz zu bestimmen.

Norme de base pour la mesure du champ électromagnétique sur site, en relation avec l’exposition du corps humain à proximité des stations de base

La présente Norme Européenne spécifie les méthodes de mesure, les systèmes de mesure et le post-traitement qui doivent être mis en oeuvre pour déterminer sur site, le champ électromagnétique pour l'évaluation de l'exposition du corps humain à proximité des stations de base, telles que définies au 3.2, dans la gamme de fréquences de 100 kHz à 300 GHz.

Osnovni standard za terensko merjenje jakosti elektromagnetnega polja v zvezi z izpostavljenostjo ljudi v okolici baznih postaj

Ta evropski standard določa merilne metode in sisteme ter naknadno obdelavo v okolici baznih postaj, kot je določeno v poglavju 3.2, za terensko merjenje elektromagnetnega polja v zvezi z izpostavljenostjo ljudi v frekvenčnem območju 100 kHz–300 GHz.

General Information

Status
Published
Publication Date
09-Feb-2009
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
12-Jan-2009
Due Date
19-Mar-2009
Completion Date
10-Feb-2009

Relations

Buy Standard

Standard
EN 50492:2009
English language
60 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST EN 50492:2009
01-marec-2009
Osnovni standard za terensko merjenje jakosti elektromagnetnega polja v zvezi z
izpostavljenostjo ljudi v okolici baznih postaj
Basic standard for the in-situ measurement of electromagnetic field strength related to
human exposure in the vicinity of base stations
Grundnorm für die Messung der elektromagnetischen Feldstärke am Aufstell- und
Betriebsort von Basisstationen in Bezug auf die Sicherheit von in ihrer Nähe befindlichen
Personen
Norme de base pour la mesure du champ électromagnétique sur site, en relation avec
l’exposition du corps humain à proximité des stations de base
Ta slovenski standard je istoveten z: EN 50492:2008
ICS:
17.220.20 0HUMHQMHHOHNWULþQLKLQ Measurement of electrical
PDJQHWQLKYHOLþLQ and magnetic quantities
33.070.01 Mobilni servisi na splošno Mobile services in general
SIST EN 50492:2009 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------

SIST EN 50492:2009

---------------------- Page: 2 ----------------------

SIST EN 50492:2009

EUROPEAN STANDARD
EN 50492

NORME EUROPÉENNE
November 2008
EUROPÄISCHE NORM

ICS 17.220.20; 33.070.01


English version


Basic standard for the in-situ measurement of electromagnetic field
strength related to human exposure in the vicinity of base stations



Norme de base pour la mesure du champ Grundnorm für die Messung
électromagnétique sur site, en relation der elektromagnetischen Feldstärke
avec l’exposition du corps humain am Aufstell- und Betriebsort
à proximité des stations de base von Basisstationen in Bezug
auf die Sicherheit von in ihrer Nähe
befindlichen Personen





This European Standard was approved by CENELEC on 2008-09-01. CENELEC members are bound to comply
with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard
the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on
application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CENELEC member into its own language and notified
to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Cyprus, the
Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia,
Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain,
Sweden, Switzerland and the United Kingdom.

CENELEC
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels


© 2008 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.
Ref. No. EN 50492:2008 E

---------------------- Page: 3 ----------------------

SIST EN 50492:2009
EN 50492:2008 – 2 –
Foreword
This European Standard was prepared by the Technical Committee CENELEC TC 106X, Electromagnetic
fields in the human environment.
The text of the draft was submitted to the formal vote and was approved by CENELEC as EN 50492 on
2008-09-01.
The following dates were fixed:
– latest date by which the EN has to be implemented
at national level by publication of an identical
national standard or by endorsement (dop) 2009-09-01
– latest date by which the national standards conflicting
with the EN have to be withdrawn (dow) 2011-09-01
This European Standard has been prepared under Mandate M/305 given to CENELEC by the European
Commission and the European Free Trade Association and covers essential requirements of EC Directive
RTTED (1999/5/EC).
__________

---------------------- Page: 4 ----------------------

SIST EN 50492:2009
– 3 – EN 50492:2008
Contents
1 Scope . 7
2 Normative references . 7
3 Terms and definitions . 7
4 Physical quantities, units and constants . 10
4.1 Quantities . 10
4.2 Constants . 10
5 General process . 10
6 Site analysis and case determination . 12
6.1 Introduction . 12
6.2 RF sources to be considered . 12
6.3 Case determination . 12
7 Determination of field quantity to measure in relation to the distance to source antennas . 13
8 Requirements of measurement systems . 13
8.1 General . 13
8.2 Technical requirements of measurement systems . 14
9 Measurement procedures . 16
9.1 General requirements . 16
9.2 Field strength assessment . 16
10 Assessment of the field strength at maximum traffic of a cellular network . 18
11 Uncertainty . 19
11.1 Requirement for expanded uncertainty . 19
11.2 Uncertainty estimation . 19
12 Presentation of results . 22
Annex A (informative) Main services operating RF . 23
Annex B (informative) Sweeping method . 24
B.1 Measurement setup . 24
B.2 Measurement method . 24
B.3 Discussion on advantages and disadvantages of the method . 24
B.4 References . 25
Annex C (informative) Example of broadband equipment use. 26
C.1 General . 26
C.2 Locating the point of maximum exposure . 26
Annex D (informative) Spectrum analyser settings . 28
D.1 Introduction . 28
D.2 Detection algorithms . 28
D.3 Resolution bandwidth and channel power processing . 29
D.4 Integration per service . 31

---------------------- Page: 5 ----------------------

SIST EN 50492:2009
EN 50492:2008 – 4 –
Annex E (informative) Measuring and evaluating different broadcast signals in respect to EMF . 32
E.1 FM radio . 32
E.2 DAB (Digital Audio Broadcasting; Digitalradio) . 32
E.3 Long wave, medium wave and short wave service . 32
E.4 DRM (Digital Radio Mondial) . 33
E.5 Analog (PAL and SECAM modulation) . 33
E.6 DVB-T . 34
Annex F (informative) WCDMA measurement and calibration using a code domain analyser . 35
F.1 General . 35
F.2 Requirements for the code domain analyser . 35
F.3 Antenna factor . 36
F.4 Calibration . 37
Annex G (informative)  Influence of human body on probe measurements of the electrical field
                strength . 40
G.1 Simulations of the influence of human body on probe measurements based on the method of
moments (surface equivalence principle). 40
G.2 Comparison with measurements . 41
G.3 Conclusions . 42
Annex H (informative) Spatial averaging . 43
H.1 Introduction . 43
H.2 Small-scale fading variations . 44
H.3 Error on the estimation of local average power density . 44
H.4 Characterization of environment statistical properties . 45
H.5 Characterisation of different averaging schemes . 45
H.6 Example of uncertainty assessment . 49
H.7 References . 49
Annex I (informative) Maximum traffic estimation of cellular network contribution . 50
I.1 General . 50
I.2 GSM and estimation of the exposure at maximum traffic . 50
I.3 UMTS and estimation of the exposure at maximum traffic . 51
I.4 Influence of traffic in real operating network . 51
I.5 Maximum traffic estimation for TETRA and TETRAPOL PMR cellular network contribution . 52
Annex J (informative) WiFi measurements. 55
J.1 General . 55
J.2 Integration time for reproducible measurements . 55
J.3 Channel occupation . 56
J.4 Some considerations . 56
J.5 Scalability by channel occupation . 57
J.6 Influence of the application layers . 57
Annex K (informative) Examples of implementation of this standard in the context of Council
               Recommendation 1999/519/EC . 58
K.1 Purpose . 58
K.2 General considerations . 58
K.3 Evaluation of broadband results . 58
K.4 Evaluation of frequency selective results . 59
Bibliography . 60

---------------------- Page: 6 ----------------------

SIST EN 50492:2009
– 5 – EN 50492:2008

Figures
Figure 1 – Alternative routes to determine in-situ the electromagnetic field for human exposure
assessm ent . 11
Figure 2 – Location of measurement points for spatial averaging. 17
Figure D.1 – Spectral occupancy for GMSK. 29
Figure D.2 – Spectral occupancy for WCDMA . 30
Figure F.1 – Channel allocation . 35
Figure F.2 – Decoder power range versus antenna factor and cable losses for satisfying selective
measurement requirements . 37
Figure G.1 – Simulation arrangement . 40
Figure G.2 – Body influence . 41
Figure G.3 – Simulation arrangement . 42
Figure H.1 – Physical model of small-scale fading variations . 43
Figure H.2 – Example of field strength variations in line of sight of an antenna operating at 2,2 GHz . 43
Figure H.3 – Error at 95 % on average power estimation . 45
Figure H.4 – 343 measurement positions building a cube (centre) and different templates consisting of a
different number of positions . 46
Figure H.5 – Moving a template (Line 3) through the CUBE . 47
Figure H.6 – Standard deviations for GSM 900, DCS 1 800 and UMTS . 48
Figure I.1 – Time variation over 24 h of the exposure induced by GSM 1 800 MHz (left) and FM (right) . 52
Figure J.1 – Example of WiFi frames . 55
Figure J.2 – Channel occupation versus the integration time . 55
Figure J.3 – Channel occupation versus nominal throughput rate . 56
Figure J.4 – WiFi spectrum trace snapshot . 56

---------------------- Page: 7 ----------------------

SIST EN 50492:2009
EN 50492:2008 – 6 –
Tables
Table 1 – Quantities to measure at different distances from radio-stations . 13
Table 2 – Broadband measurement system requirements . 15
Table 3 – Frequency selective measurement systems requirements . 15
Table 4 – Uncertainty assessment in controlled environment . 20
Table 5 – Uncertainty assessment in-situ . 21
Table A.1 – Main services . 23
Table D.1 – Example of spectrum analyser settings for an integration per service . 31
Table F.1 – WCDMA decoder requirements . 36
Table F.2 – Signals configuration . 37
Table F 3 – WCDMA generator setting for power linearity . 38
Table F.4 – WCDMA generator setting for decoder calibration. 38
Table F.5 – WCDMA generator setting for reflection coefficient measurement . 39
Table G.1 – Maximum simulated error due to the influence of a human body on the measurement
values of an omni-directional probe . 41
Table G.2 – Measured influence of a human body on omni-directional probe measurements . 42
Table H.1 – Uncertainty a 95 % for different fading models . 45
Table H.2 – Correlation coefficients for GSM 900 and DCS 1 800 . 47
Table H.3 – Variations of the standard deviations for the GSM 900, DCS 1 800 and UMTS frequency
band . 48
Table H.4 – Examples of total uncertainty calculation . 49
Table K.1 – Example of a results table for broadband measurements of the electric field strength at one
measurement point including an evaluation of compliance with exposure limits . 59
Table K.2 – Example of a results table for frequency selective measurements of the electric field
strength at one measurement point including an evaluation of compliance with exposure
limits . 59

---------------------- Page: 8 ----------------------

SIST EN 50492:2009
– 7 – EN 50492:2008
1 Scope
This European Standard specifies in the vicinity of base station as defined in 3.2 the measurement methods,
the measurement systems and the post processing that shall be used to determine in-situ the
electromagnetic field for human exposure assessment in the frequency range 100 kHz to 300 GHz.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
EN 50383, Basic standard for the calculation and measurement of electromagnetic field strength and SAR
related to human exposure from radio base stations and fixed terminal stations for wireless
telecommunication systems (110 MHz - 40 GHz)
EN 50400, Basic standard to demonstrate the compliance of fixed equipment for radio transmission
(110 MHz – 40 GHz) intended for use in wireless telecommunication networks with the basic restrictions or
the reference levels related to general public exposure to radio frequency electromagnetic fields, when put
into service
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
antenna
device that serves as a transducer between a guided wave (e.g. coaxial cable) and a free space wave, or
vice versa. In the present standard, if not mentioned, the term antenna is used only for emitting antenna(s)
3.2
base station (BS)
fixed equipment for radio transmission intended for use in wireless telecommunications networks, such as
those used in cellular communication, Wireless Local Area Networks, point-to-point communication and
point-to-multipoint communication according to ITU-R Recommendation F.592-3. Point to point and point to
multi point communication equipment listed in “The European table of frequency allocations and utilisations
covering the frequency range 9 kHz to 275 GHz” (ERC report 25) (see example in Annex A) are considered.
For the purpose of this standard, the term “base station” includes the radio station and the antenna
3.3
average (temporal) power (P )
avg
the time-averaged rate of energy transfer defined by:
t
2
__
1
P = P(t)dt
avg

t − t
2 1
t
1

where t and t are the start and stop time of the measurement. The period t - t is the exposure duration
1 2 2 1
time
3.4
averaging time (t )
avg
appropriate time over which exposure is averaged for purposes of determining compliance with the limits

---------------------- Page: 9 ----------------------

SIST EN 50492:2009
EN 50492:2008 – 8 –
3.5
electric field strength (E)
magnitude of a field vector at a point that represents the force (F) on a small test charge (q) divided by the
charge
r
r
F
E =
q

The electric field strength is expressed in units of volt per metre (V/m)
3.6
intrinsic impedance
ratio of the electric field strength to the magnetic field strength of a propagating electromagnetic wave. The
intrinsic impedance of a plane wave in free space is 377 ohm
3.7
hemispherical isotropy
maximum deviation of the field strength when rotating the probe around its major axis with the probe
exposed to a reference wave, having varying incidence angles relative to the axis of the probe, incident from
the half space in front of the probe
3.8
probe isotropy
degree to which the response of an electric field or magnetic field probe is independent of the polarization
and direction of propagation of the incident wave
3.9
axial isotropy
maximum deviation of the field strength when rotating around the major axis of the probe housing while the
probe is exposed to a reference wave impinging from a direction along the probe major axis
3.10
linearity
maximum deviation over the measurement range of the measured quantity from the closest linear reference
curve defined over a given interval
3.11
magnetic flux density (B)
vector field quantity B which exerts on any charged particle having velocity v a force F equal to the product of
r
r
the vector product and the electric charge q of the particle:
v × B
r r
r
F = qv × B

where
r
F
 is the vector force acting on the particle in newtons
q is the charge on the particle in coulombs
r
v
 is the velocity of the particle in metres per second
r
B
 is the magnetic flux density in teslas

---------------------- Page: 10 ----------------------

SIST EN 50492:2009
– 9 – EN 50492:2008
3.12
magnetic field strength (H)
vector quantity obtained at a given point by subtracting the magnetization M from the magnetic flux density B
divided by the magnetic constant (permeability) µ:
r
r r
B
H = − M
µ

where
r
H
is the magnetic field in amperes per metre
r
B
is the magnetic flux density in teslas
µ is the magnetic constant (permeability) of the vacuum in henries per metre
r
M
is the magnetization in amperes per metre
r
NOTE For the purposes of this standard, M = 0 at all points.
3.13
multi-band
multi-band equipment is operating in more than one frequency band, e.g., GSM 900 and GSM 1 800
3.14
permeability (µ)
magnetic permeability of a material is defined by the magnetic flux density B divided by the magnetic field
strength H:
r
B
µ = r
H

where µ is the permeability of the medium expressed in Henry per metre (H/m)
3.15
permittivity (ε)
property of a dielectric material (e.g., biological tissue). In case of an isotropic material, it is defined by the
electrical flux density D divided by the electrical field strength E
r
D
ε =
r
E

The permittivity is expressed in units of farads per metre (F/m)
3.16
root-mean-square (r.m.s.)
effective value or r.m.s. value obtained by taking the square root of the average of the square of the value of
the periodic function taken throughout one period
3.17
power density (S)
radiant power incident perpendicular to a surface, divided by the area of the surface. The power density is
expressed in units of watt per square metre (W/m²)
3.18
transmitter
device to generate radio frequency electrical power to be connected to an antenna for communication purpose

---------------------- Page: 11 ----------------------

SIST EN 50492:2009
EN 50492:2008 – 10 –
4 Physical quantities, units and constants
4.1 Quantities
The internationally accepted SI-units are used throughout the standard.
Quantity Symbol Unit Dimensions
Current density J ampere per square metre A/m²

Electric field strength E volt per metre V/m
Electric flux density D coulomb per square metre C/m²
Frequency f hertz Hz
Magnetic field strength H ampere per metre A/m
Magnetic flux density B tesla (Vs/m²) T
µ
Permeability henry per metre H/m
Permittivity ε farad per metre F/m
Wavelength metre m
λ
4.2 Constants
Physical constant Magnitude
8
Speed of light in a vacuum c 2,997 x 10 m/s
-12
Permittivity of free space ε
0 8,854 x 10 F/m
-7
Permeability of free space µ
0 4π x 10 H/m
Impedance of free space 377 ohm (approx 120π Ω)
η
0
5 General process
This clause describes the process that shall be followed to determine the methods, the measurement
systems and the post processing that shall be used to estimate in-situ the
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.