Self-propelled machinery for forestry - Laboratory tests and performance requirements for roll-over protective structures - Part 2: Machines having a rotating platform with a cab and boom on the platform

This part of ISO 8082 establishes a consistent and reproducible means of evaluating the load-carrying
characteristics of roll-over protective structures (ROPS) on self-propelled forestry machines under static
loading, and gives performance requirements for a representative specimen under such loading. It is
applicable to machines configured as forestry machines or defined as such in ISO 6814, having a rotating
platform with a cab — with or without a fixed cab riser — and boom on the same or a separate platform,
intended to be operated by an operator wearing a seat-belt.
It is not applicable to forestry machines with elevating cabs.1)

Machines forestières automotrices - Essais de laboratoire et exigences de performance pour les structures de protection au retournement - Partie 2: Machines ayant une tourelle d'orientation avec une cabine et une flèche sur la tourelle

L'ISO 8082 �tablit un moyen uniforme et reproductible pour �valuer les caract�ristiques de charge des structures de protection au retournement (ROPS) des machines foresti�res automotrices sous charges statiques, et sp�cifie des exigences de performance d'un �chantillon repr�sentatif dans ces conditions de charge. Elle est applicable aux machines configur�es en tant que machines foresti�res et aux machines foresti�res telles que d�finies dans l'ISO 6814, ayant une tourelle d'orientation avec une cabine, munies ou non d'un rehausseur de cabine fixe, et ayant une fl�che sur la m�me tourelle ou s�par�e, et destin�es � �tre utilis�es par un op�rateur maintenu par une ceinture de s�curit�. Elle n'est pas applicable aux machines foresti�res �quip�es d'un rehausseur de cabine.

Gozdarski stroji z lastnim pogonom - Laboratorijski preskusi in zahtevane lastnosti za zaščitne strukture proti prevrnitvi - 2. del: Stroji, ki imajo vrtljivo ploščad s kabino in jamborjem na ploščadi

Ta del standarda ISO 8082 vzpostavlja skladen, ponovljiv način za zaščitne strukture proti prevrnitvi na gozdarskih strojih z lastnim pogonom pod statično obremenitvijo in določa zahtevane lastnosti za reprezentativnega preskušanca pod tako obremenitvijo. Velja za stroje, ki so konfigurirani kot gozdarski stroji ali opredeljeni kot taki v standardu ISO 6814, z vrtljivo ploščadjo s kabino – s fiksno napravo za dvig kabine ali brez nje – in jamborjem na isti ali ločeni ploščadi, ki naj bi jo upravljal upravljavec, pripet z varnostnim pasom. Ne velja za gozdarske stroje s kabino, ki se lahko dvigne.

General Information

Status
Published
Publication Date
23-Feb-2015
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
11-Feb-2015
Due Date
18-Apr-2015
Completion Date
24-Feb-2015

Relations

Buy Standard

Standard
ISO 8082-2:2011 - Self-propelled machinery for forestry -- Laboratory tests and performance requirements for roll-over protective structures
English language
20 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 8082-2:2015
English language
25 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 8082-2:2011 - Machines forestieres automotrices -- Essais de laboratoire et exigences de performance pour les structures de protection au retournement
French language
21 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)

INTERNATIONAL ISO
STANDARD 8082-2
First edition
2011-12-01

Self-propelled machinery for forestry —
Laboratory tests and performance
requirements for roll-over protective
structures —
Part 2:
Machines having a rotating platform with
a cab and boom on the platform
Machines forestières automotrices — Essais de laboratoire et
exigences de performance pour les structures de protection au
retournement —
Partie 2: Machines ayant une tourelle d'orientation avec une cabine et
une flèche sur la tourelle




Reference number
ISO 8082-2:2011(E)
©
ISO 2011

---------------------- Page: 1 ----------------------
ISO 8082-2:2011(E)

COPYRIGHT PROTECTED DOCUMENT


©  ISO 2011
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

ii © ISO 2011 – All rights reserved

---------------------- Page: 2 ----------------------
ISO 8082-2:2011(E)
Contents Page
Foreword . iv
Introduction . v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Symbols . 5
5 Test method and facilities . 8
5.1 General . 8
5.2 Instrumentation . 8
5.3 Test facilities . 8
5.4 ROPS/rotating platform assembly and attachment to bedplate . 9
6 Test loading procedure . 9
6.1 General . 9
6.2 Lateral loading . 11
6.3 Vertical loading . 11
6.4 Longitudinal loading . 12
7 Temperature and material requirements . 13
8 Performance requirements . 15
9 Labelling of ROPS . 17
9.1 General . 17
9.2 Label specifications . 17
9.3 Label content . 17
10 Reporting results . 17
Annex A (normative) Test report for ISO 8082-2 . 18
Bibliography . 20

© ISO 2011 – All rights reserved iii

---------------------- Page: 3 ----------------------
ISO 8082-2:2011(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 8082-2 was prepared by Technical Committee ISO/TC 23, Tractors and machinery for agriculture and
forestry, Subcommittee SC 15, Machinery for forestry.
ISO 8082 consists of the following parts, under the general title Self-propelled machinery for forestry —
Laboratory tests and performance requirements for roll-over protective structures:
 Part 1: General machines
 Part 2: Machines having a rotating platform with a cab and boom on the platform

iv © ISO 2011 – All rights reserved

---------------------- Page: 4 ----------------------
ISO 8082-2:2011(E)
Introduction
Earth-moving excavators used in cross-over applications involving sites with trees, but excluding forestry
applications, are covered by ISO 12117-2. Because of the similarity between excavators and forestry
machines having a rotating platform with a cab, a fixed cab riser and a boom on a platform, this part of
ISO 8082 specifies test methods and procedures similar to those of ISO 12117-2 and ISO 3471.

© ISO 2011 – All rights reserved v

---------------------- Page: 5 ----------------------
INTERNATIONAL STANDARD ISO 8082-2:2011(E)

Self-propelled machinery for forestry — Laboratory tests and
performance requirements for roll-over protective structures —
Part 2:
Machines having a rotating platform with a cab and boom on
the platform
1 Scope
This part of ISO 8082 establishes a consistent and reproducible means of evaluating the load-carrying
characteristics of roll-over protective structures (ROPS) on self-propelled forestry machines under static
loading, and gives performance requirements for a representative specimen under such loading. It is
applicable to machines configured as forestry machines or defined as such in ISO 6814, having a rotating
platform with a cab — with or without a fixed cab riser — and boom on the same or a separate platform,
intended to be operated by an operator wearing a seat-belt.
1)
It is not applicable to forestry machines with elevating cabs.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 898-1, Mechanical properties of fasteners made of carbon steel and alloy steel — Part 1: Bolts, screws
and studs with specified property classes — Coarse thread and fine pitch thread
ISO 898-2, Mechanical properties of fasteners made of carbon steel and alloy steel — Part 2: Nuts with
specified property classes — Coarse thread and fine pitch thread
ISO 3164, Earth-moving machinery — Laboratory evaluations of protective structures — Specifications for
deflection-limiting volume
ISO 3411, Earth-moving machinery — Physical dimensions of operators and minimum operator space
envelope
ISO 5353, Earth-moving machinery, and tractors and machinery for agriculture and forestry — Seat index
point
ISO 6814, Machinery for forestry — Mobile and self-propelled machinery — Terms, definitions and
classification

1) The roll-over behaviour of such machines needs more study.
© ISO 2011 – All rights reserved 1

---------------------- Page: 6 ----------------------
ISO 8082-2:2011(E)
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
bedplate
substantially rigid part of the test fixtures to which the machine frame is attached for the purpose of the test
[ISO 12117-2]
3.2
boundary plane
BP
plane defined as the vertical projected planes of the back, side and knee area of the DLV
NOTE The boundary plane is used to determine the load application zone.
[ISO 12117-2]
3.3
deflection-limiting volume
DLV
orthogonal approximation of a large, seated, male operator as defined in ISO 3411 wearing normal clothing
and a protective helmet
[ISO 8082-1]
3.4
deflection of ROPS
movement of the ROPS, mounting system and frame section as measured at the load application point,
excluding the effect of any movement of the test fixture(s)
[ISO 12117-2]
3.5
elevating cab
additional means for raising and lowering the cab relative to the rotating platform
3.6
fixed cab riser
additional structure that changes the height position of the cab relative to the rotating platform and which is
considered a ROPS structural member
3.7
lateral simulated ground plane
LSGP
for a machine coming to rest on its side, the plane 15° away from the DLV about the horizontal axis within the
plane established in the vertical plane passing through the outermost point of the ROPS
See Figure 1.
NOTE 1 The LSGP is established on an unloaded ROPS and moves with the member to which the load is applied
while maintaining its 15° angle with respect to the vertical.
NOTE 2 Adapted from ISO 8082-1:2009, definition 3.5.1.
2 © ISO 2011 – All rights reserved

---------------------- Page: 7 ----------------------
ISO 8082-2:2011(E)
3.8
locating axis
LA
horizontal axis for positioning the DLV with respect to the seat index point (SIP)
[ISO 3164]
3.9
load application point
LAP
point on the ROPS structure where the test load force (F) is applied
[ISO 12117-2]
3.10
load distribution device
LDD
device used to prevent localized penetration of the ROPS members at the load application point
[ISO 12117-2]

Key
1 upper ROPS member to which the lateral load is applied
2 outermost point from the end view of ROPS member (1)
3 lateral simulated ground plane (LSGP)
a vertical line passing through the point (2)
b vertical plane parallel to the machine longitudinal centreline through line a

Figure 1 — Determination of lateral simulated ground plane (LSGP)
© ISO 2011 – All rights reserved 3

---------------------- Page: 8 ----------------------
ISO 8082-2:2011(E)
3.11
machine mass
m
maximum mass declared by the manufacturer, including attachments in the operating condition and with tools,
ROPS and all reservoirs filled, but excluding towed equipment (e.g. chippers, planters, discs) and any load
that could be carried on the machine
[ISO 8082-1]
3.12
operator protective structure
OPS
system of structural members arranged in such a way as to minimize the possibility of operator injury from
penetrating objects (such as whipping saplings, branches and broken winch lines)
[ISO 8082-1]
3.13
representative specimen
ROPS, mounting hardware and machine/rotating platform (complete or partial and including elements
connecting the ROPS to the frame) used for test purposes that is within the range of material and
manufacturing variances designated by the manufacturer's production specifications
NOTE 1 The intent is that all ROPS manufactured to these specifications are capable of meeting or exceeding the
stated levels of performance.
NOTE 2 Adapted from ISO 12117-2:2008, definition 3.17.
3.14
roll-over protective structure
ROPS
system of structural members whose primary purpose is to reduce the possibility of a seat-belted operator
being crushed should the machine roll-over
[ISO 8082-1]
NOTE These structural members include any sub-frame, bracket, mounting, socket, bolt, pin, suspension or flexible
shock absorber used to secure the system to the machine rotating platform.
3.15
ROPS structural member
member designed to withstand applied force and/or absorb energy
NOTE 1 This may include components such as sub-frame, bracket, fixed cab riser, mounting, socket, bolt, pin,
suspension or flexible shock absorber.
NOTE 2 Adapted from ISO 12117-2:2008, definition 3.20.
3.16
socket
S
test component that allows unrestricted point loading of the load distribution device (LDD)
[ISO 3471]
4 © ISO 2011 – All rights reserved

---------------------- Page: 9 ----------------------
ISO 8082-2:2011(E)
3.17
rotating platform
structural member(s) of the machine to which the ROPS is permanently attached during normal operation
NOTE For the purposes of this part of ISO 8082, all bolt-on and normally detachable components may be removed
from the rotating platform. It is necessary only that this frame constitute a replication of the rotating platform as it attaches
to the top of the rotating bearing.
3.18
vertical projection of DLV
cross-sectional area of the column formed by vertically projecting the outside corners of the deflection-limiting
volume (DLV), excluding the foot section
NOTE Adapted from ISO 12117-2:2008, definition 3.25.
4 Symbols
U energy absorbed by the structure, related to the manufacturer's declared machine mass (m), expressed in
joules (J)
F load force, expressed in newtons (N)
m machine mass, expressed in kilograms (kg)
L length of the ROPS, expressed in millimetres (mm):
 For ROPS with cantilevered load-carrying structural members, L is the longitudinal distance from the
outer surface of the ROPS post(s) to the outer surface of the furthest cantilevered load-carrying
members, if applicable, at the top of the ROPS. See Figures 2 and 7.
 For ROPS without cantilevered load-carrying structural members, L is the distance between the front
and rear surface of the ROPS post. It is not necessary for the ROPS structural members to cover the
complete vertical projection of the DLV.
 For multiple-post ROPS, L is the greatest longitudinal distance from the outer surface of the front to
the outer surface of the rear posts. See Figure 2.
 For ROPS with curved structural members, L is defined by the intersection of plane A with the outer
surface of the vertical member at Y. Plane A is the bisector of the angle formed by the intersection of
planes B and C. B is the tangent line at the outer surface parallel to plane D. Plane D is the plane
intersecting the intersections of the curved ROPS members with the adjacent members. Plane C is
the projection of the top surface of the upper ROPS structural member. See Figure 3.
W width of ROPS, expressed in millimetres:
 For ROPS with cantilevered load-carrying structural members, W is that portion of the cantilevered
load-carrying members that covers at least the vertical projection of the width of the DLV, as
measured at the top of the ROPS from the outside faces of the cantilevered load-carrying members.
See Figures 2 and 8.
 For all other ROPS, W is the greatest total width between the outside of the left and right ROPS posts,
as measured at the top of the ROPS from the outside faces of the load-carrying members. See
Figure 2.
 For ROPS with curved structural members, W is defined by the intersection of plane A with the outer
surface of the vertical member at Y. Plane A is the bisector of the angle formed by the intersection of
planes B and C. B is the tangent line at the outer surface parallel to plane D. Plane D is the plane
intersecting the intersections of the curved ROPS members with the adjacent members. Plane C is
the projection of the top surface of the upper ROPS structural member. See Figure 3.
© ISO 2011 – All rights reserved 5

---------------------- Page: 10 ----------------------
ISO 8082-2:2011(E)
 deflection of the ROPS, expressed in millimetres
H height of the load application zone, expressed in millimetres:
 For a straight member, H is the distance from the top to the bottom of the ROPS structural member,
as shown in Figure 2.
 For a curved member, H is the vertical distance from the top of the member to the vertical plane at
the end of L where it intersects the inner surface of the curved member at Y, as shown in Figure 3 a).
 For a ROPS configuration consisting of separate upper structural members as shown in Figure 4,
each structure shall fulfil the material requirements of Clause 7. Height H may include both upper
structural members, by spanning both with an LDD and with the LAP applied halfway between the
outer extremes of the upper structural members.


Key
BP boundary planes of DLV
E vertical midpoint of upper
ROPS structural member
F load force
LAP load application point
LDD load distribution device
S socket
L [W] length or width of ROPS
NOTE Two sockets are shown in this example to illustrate that more than one socket may be used simultaneously to
apply the required force.
Figure 2 — Four-post ROPS lateral load application point
6 © ISO 2011 – All rights reserved

---------------------- Page: 11 ----------------------
ISO 8082-2:2011(E)

a)  Example of curved structural member (curved post) showing L or W and H dimensioning

b)  Example of curved structural member (curved post) showing load application
Key
A angle bisector of two tangent lines (B and C)
B tangent line parallel to D on outer surface of curved ROPS structural member
C projection of top surface of upper ROPS structural member
D straight line intersecting ends of curved ROPS structural member with mating members
F load force
I intersection of curved surface with flat surface
H height of load application zone
LDD load distribution device
L [W] length [width] on ROPS for LAP determination
S socket
LAP load application point
Y intersection of a vertical line from LAP to inner surface of vertical member
NOTE 1 The angle between A and B is equal to the angle between B and C.
NOTE 2 Typical, but not required, layout.
Figure 3 — Examples of curved structural member
© ISO 2011 – All rights reserved 7

---------------------- Page: 12 ----------------------
ISO 8082-2:2011(E)

Key
H full height of uppermost ROPS structural member(s) referenced to determine height of LDD
L length of ROPS for LAP determination
Figure 4 — Height of load application zone of ROPS with separate upper structural members
5 Test method and facilities
CAUTION — Some of the tests specified in this International Standard involve the use of processes
which could lead to a hazardous situation.
5.1 General
The test requirements are force resistance in the lateral and vertical directions, as well as energy absorption in
the lateral and then longitudinal directions. There are limitations on deflections under lateral, longitudinal and
vertical loading. The force and energy resistance plus the limitations on deflection are intended to ensure that
the ROPS will not compromise the DLV as defined in ISO 3164 as a result of impacts during a roll-over.
5.2 Instrumentation
The test apparatus shall be equipped with instruments for measuring the force applied to the protective
structure and the deflection (deformation) of the structure. The instrument accuracy shall be in accordance
with Table 1.
Table 1 — Instrument accuracy requirements
a
Measurement
Accuracy
Deflection of ROPS 5 % of maximum deflection measured
Force applied to ROPS 5 % of maximum force measured
a
The percentages are nominal ratings of the accuracy of the instrumentation and shall not be
taken to indicate that a compensating overtest is required.

5.3 Test facilities
Facilities shall be provided for securing the representative specimen to a bedplate and for applying the
required lateral, longitudinal and vertical loads, as specified by the formulae given in Table 3.
8 © ISO 2011 – All rights reserved

---------------------- Page: 13 ----------------------
ISO 8082-2:2011(E)
5.4 ROPS/rotating platform assembly and attachment to bedplate
5.4.1 The ROPS shall be attached to the machine/rotating platform or body as it would be on an operating
machine. A complete machine or rotating platform is not required for the evaluation. Nevertheless, the
machine/rotating platform or body and mounted ROPS test specimen shall represent the structural
configuration of an operating installation. In cases of multiple rotating structural elements, the lowest rotating
means shall be included in the test. All normally detachable windows, panels, doors and other non-structural
elements shall be removed so that they neither contribute to, nor detract from, the structural evaluation.
The ROPS/rotating platform assembly shall be secured to the bedplate so that the members connecting the
assembly and bedplate experience minimal deflection during testing.
Non-ROPS elements (polycarbonate windows, OPS, etc.) with structural attributes that contribute to the
performance of the ROPS structure may be included.
5.4.2 The assembly shall be secured or modified, or both, so that any machine element that might be
considered as suspension (rubber, gas, gas-oil or mechanical spring) shall be effectively eliminated as an
energy absorber. The ROPS structural members may, however, include suspension or flexible shock
absorbers, which shall not be altered.
5.4.3 During lateral loading, the representative specimen shall not receive any support from the bedplate,
other than that due to the initial attachment.
5.4.4 The test shall be conducted with any machine/ground suspension elements blocked externally so that
they do not contribute to the load-deflection behaviour of the test specimen. Elements used to attach the
ROPS to the machine/rotating platform acting as a load path shall be in place and considered part of the
ROPS structural member.
5.4.5 If equipped with a cab tilt feature, for load testing the cab shall be positioned in the normal operating
position for forestry operations. If the tilt mechanism is designed to transfer, it shall be considered part of the
representative specimen. Tilt mechanisms used to connect the ROPS to the structure during normal working
operation shall be considered part of the representative specimen. Tilt mechanisms used for service access or
transport and which are fixed into position during working operation do not require their rotating mechanism to
be included as part of the representative specimen.
6 Test loading procedure
6.1 General
6.1.1 The test loading sequence shall be
a) lateral load energy and force,
b) vertical load force, and
c) longitudinal load energy.
6.1.2 All tests prescribed in Table 3 shall be conducted on the same representative specimen. If the load
must be stopped and re-applied for any reason, then only the additional energy summed after reaching the
maximum deflection of the first loading shall be added to the sum.
6.1.3 The DLV and its location shall be in accordance with ISO 3164. The DLV shall be fixed firmly to the
same part of the machine to which the operator's seat is normally secured, and shall remain there during the
entire formal test period. For machines with a reversible operator's position, the DLV is considered to be the
combined clearance zones for the two positions.
© ISO 2011 – All rights reserved 9

---------------------- Page: 14 ----------------------
ISO 8082-2:2011(E)
6.1.4 All LAPs shall be identified and marked on the structure before any loading is applied. No repair or
straightening of any ROPS/machine member shall be carried out during or between loading phases. An LDD
may be used to prevent localized penetration. The LDD shall not impede rotation of the ROPS.
NOTE The figures referenced in the following subclauses are illustrative and it is not intended that they restrict the
design of loading devices.

Key
1 ROPS
2 rotating platform
3 bedplate
Figure 5 — Anchorage of rotating platform
6.1.5 For ROPS having more than two posts, the LDD shall not distribute the load over a distance greater
than 80 % of the length, L. Figure 3 provide guidance on L for curved surfaces.
6.1.6 The height of the LDD shall be as determined from Figures 2, 3 and 4 for the upper ROPS structural
member(s). The LDD may be formed so that it comes into contact with the contour of the load application
section(s) of the ROPS.
6.1.7 For all one- or two-post ROPS, the initial loading shall be dictated by the length, L, and the vertical
projections of the front and rear boundary planes of the DLV. The LAP shall not be within L/3 of the ROPS
structure. Should the L/3 point be between the vertical projection of the DLV and the ROPS structure, the LAP
shall be moved away from the structure until it enters the vertical projection of the DLV (see Figure 2).
6.1.8 For ROPS with more than two posts, the LAP shall be located between vertical projections of the front
and rear boundary planes of the DLV. See Figure 2.
6.1.9 If the operator's seat is off the machine's or rotating platform's longitudinal centreline, the loading shall
be against the outermost side nearest the seat. If mounting of the ROPS is such that different force-deflection
relations are obtained from loading from left or right, the side loaded shall be that which will place the most
severe requirements on the representative specimen.
6.1.10 For on-centreline seats, if mounting of the ROPS is such that different force-deflection relations are
obtained from loading from left or right, the side loaded shall be that which will place the most severe
requirements on the ROPS/machine assembly.
10 © ISO 2011 – All rights reserved

---------------------- Page: 15 ----------------------
ISO 8082-2:2011(E)
6.1.11 The initial direction of the loading shall be horizontal and perpendicular to a vertical plane through the
machine's or rotating platform's longitudinal centreline. As loading continues, ROPS/machine/rotating platform
deformations may cause the direction of loading to change; this is permissible.
6.1.12 The rate of application of deflection (load) shall be such that the loading may be considered static,
i.e. a speed of 5 mm/s. At deflection increments of no greater than 15 mm at the point of application of the
resultant load, the force and deflection shall be recorded and plotted. The loading shall be continued until the
ROPS has achieved both the force and energy requirements. The area under the resulting force-deflection
curve equals the energy. See Figure 6. The deflection or deflections used in calculating the energy shall be
that of the ROPS along the line(s) of action of the force(s). Any deflection of members used to support the
LAP(s) shall not be included in the deflection measurements used for the calculation of energy.

Key
F force
 deflection
FF F FF
11 1 2 NN1
U energy: U ( )  . ( )
21 NN1
22 2
Figure 6 — Force-deflection curve for lateral loading
6.2 Lateral loading
6.2.1 The lateral load shall be applied to the upper ROPS structural member(s) to determine the
force-deflection characteristics.
6.2.2 If the ROPS is off the machine/rotating platform's longitudinal centreline, the lateral load shall be
against the outermost side which is the furthest in distance from the equipment and attachment of the
machine/rotating platform. If this requirement is in conflict with those of 6.1.9, then the most severe
requirements shall be used to evaluate operator protection, i.e. it shall not compromise the DLV.
6.3 Vertical loading
6.3.1 After completion of lateral loading, a vertical load shall be applied to the top of the ROPS using a
250 mm wide beam.
© ISO 2011 – All rights reserved 11

---------------------- Page: 16 ----------------------
ISO 8082-2:2011(E)
6.3.2 For all ROPS, the centre of the vertical load shall be applied in the same vertical plane, perpendicular
to the longitudinal centreline of the ROPS, (see 6.1.7 and 6.1.8), as for the lateral load, defined on the
structure before deformation.
6.3.3 The load on
...

SLOVENSKI STANDARD
SIST ISO 8082-2:2015
01-april-2015
1DGRPHãþD
SIST ISO 8082:1995
*R]GDUVNLVWURML]ODVWQLPSRJRQRP/DERUDWRULMVNLSUHVNXVLLQ]DKWHYDQH
ODVWQRVWL]D]DãþLWQHVWUXNWXUHSURWLSUHYUQLWYLGHO6WURMLNLLPDMRYUWOMLYR
SORãþDGVNDELQRLQMDPERUMHPQDSORãþDGL
Self-propelled machinery for forestry - Laboratory tests and performance requirements
for roll-over protective structures - Part 2: Machines having a rotating platform with a cab
and boom on the platform
Machines forestières automotrices - Essais de laboratoire et exigences de performance
pour les structures de protection au retournement - Partie 2: Machines ayant une tourelle
d'orientation avec une cabine et une flèche sur la tourelle
Ta slovenski standard je istoveten z: ISO 8082-2:2011
ICS:
65.060.80 Gozdarska oprema Forestry equipment
SIST ISO 8082-2:2015 en,fr
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------

SIST ISO 8082-2:2015

---------------------- Page: 2 ----------------------

SIST ISO 8082-2:2015

INTERNATIONAL ISO
STANDARD 8082-2
First edition
2011-12-01

Self-propelled machinery for forestry —
Laboratory tests and performance
requirements for roll-over protective
structures —
Part 2:
Machines having a rotating platform with
a cab and boom on the platform
Machines forestières automotrices — Essais de laboratoire et
exigences de performance pour les structures de protection au
retournement —
Partie 2: Machines ayant une tourelle d'orientation avec une cabine et
une flèche sur la tourelle




Reference number
ISO 8082-2:2011(E)
©
ISO 2011

---------------------- Page: 3 ----------------------

SIST ISO 8082-2:2015
ISO 8082-2:2011(E)

COPYRIGHT PROTECTED DOCUMENT


©  ISO 2011
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

ii © ISO 2011 – All rights reserved

---------------------- Page: 4 ----------------------

SIST ISO 8082-2:2015
ISO 8082-2:2011(E)
Contents Page
Foreword . iv
Introduction . v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Symbols . 5
5 Test method and facilities . 8
5.1 General . 8
5.2 Instrumentation . 8
5.3 Test facilities . 8
5.4 ROPS/rotating platform assembly and attachment to bedplate . 9
6 Test loading procedure . 9
6.1 General . 9
6.2 Lateral loading . 11
6.3 Vertical loading . 11
6.4 Longitudinal loading . 12
7 Temperature and material requirements . 13
8 Performance requirements . 15
9 Labelling of ROPS . 17
9.1 General . 17
9.2 Label specifications . 17
9.3 Label content . 17
10 Reporting results . 17
Annex A (normative) Test report for ISO 8082-2 . 18
Bibliography . 20

© ISO 2011 – All rights reserved iii

---------------------- Page: 5 ----------------------

SIST ISO 8082-2:2015
ISO 8082-2:2011(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 8082-2 was prepared by Technical Committee ISO/TC 23, Tractors and machinery for agriculture and
forestry, Subcommittee SC 15, Machinery for forestry.
ISO 8082 consists of the following parts, under the general title Self-propelled machinery for forestry —
Laboratory tests and performance requirements for roll-over protective structures:
 Part 1: General machines
 Part 2: Machines having a rotating platform with a cab and boom on the platform

iv © ISO 2011 – All rights reserved

---------------------- Page: 6 ----------------------

SIST ISO 8082-2:2015
ISO 8082-2:2011(E)
Introduction
Earth-moving excavators used in cross-over applications involving sites with trees, but excluding forestry
applications, are covered by ISO 12117-2. Because of the similarity between excavators and forestry
machines having a rotating platform with a cab, a fixed cab riser and a boom on a platform, this part of
ISO 8082 specifies test methods and procedures similar to those of ISO 12117-2 and ISO 3471.

© ISO 2011 – All rights reserved v

---------------------- Page: 7 ----------------------

SIST ISO 8082-2:2015

---------------------- Page: 8 ----------------------

SIST ISO 8082-2:2015
INTERNATIONAL STANDARD ISO 8082-2:2011(E)

Self-propelled machinery for forestry — Laboratory tests and
performance requirements for roll-over protective structures —
Part 2:
Machines having a rotating platform with a cab and boom on
the platform
1 Scope
This part of ISO 8082 establishes a consistent and reproducible means of evaluating the load-carrying
characteristics of roll-over protective structures (ROPS) on self-propelled forestry machines under static
loading, and gives performance requirements for a representative specimen under such loading. It is
applicable to machines configured as forestry machines or defined as such in ISO 6814, having a rotating
platform with a cab — with or without a fixed cab riser — and boom on the same or a separate platform,
intended to be operated by an operator wearing a seat-belt.
1)
It is not applicable to forestry machines with elevating cabs.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 898-1, Mechanical properties of fasteners made of carbon steel and alloy steel — Part 1: Bolts, screws
and studs with specified property classes — Coarse thread and fine pitch thread
ISO 898-2, Mechanical properties of fasteners made of carbon steel and alloy steel — Part 2: Nuts with
specified property classes — Coarse thread and fine pitch thread
ISO 3164, Earth-moving machinery — Laboratory evaluations of protective structures — Specifications for
deflection-limiting volume
ISO 3411, Earth-moving machinery — Physical dimensions of operators and minimum operator space
envelope
ISO 5353, Earth-moving machinery, and tractors and machinery for agriculture and forestry — Seat index
point
ISO 6814, Machinery for forestry — Mobile and self-propelled machinery — Terms, definitions and
classification

1) The roll-over behaviour of such machines needs more study.
© ISO 2011 – All rights reserved 1

---------------------- Page: 9 ----------------------

SIST ISO 8082-2:2015
ISO 8082-2:2011(E)
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
bedplate
substantially rigid part of the test fixtures to which the machine frame is attached for the purpose of the test
[ISO 12117-2]
3.2
boundary plane
BP
plane defined as the vertical projected planes of the back, side and knee area of the DLV
NOTE The boundary plane is used to determine the load application zone.
[ISO 12117-2]
3.3
deflection-limiting volume
DLV
orthogonal approximation of a large, seated, male operator as defined in ISO 3411 wearing normal clothing
and a protective helmet
[ISO 8082-1]
3.4
deflection of ROPS
movement of the ROPS, mounting system and frame section as measured at the load application point,
excluding the effect of any movement of the test fixture(s)
[ISO 12117-2]
3.5
elevating cab
additional means for raising and lowering the cab relative to the rotating platform
3.6
fixed cab riser
additional structure that changes the height position of the cab relative to the rotating platform and which is
considered a ROPS structural member
3.7
lateral simulated ground plane
LSGP
for a machine coming to rest on its side, the plane 15° away from the DLV about the horizontal axis within the
plane established in the vertical plane passing through the outermost point of the ROPS
See Figure 1.
NOTE 1 The LSGP is established on an unloaded ROPS and moves with the member to which the load is applied
while maintaining its 15° angle with respect to the vertical.
NOTE 2 Adapted from ISO 8082-1:2009, definition 3.5.1.
2 © ISO 2011 – All rights reserved

---------------------- Page: 10 ----------------------

SIST ISO 8082-2:2015
ISO 8082-2:2011(E)
3.8
locating axis
LA
horizontal axis for positioning the DLV with respect to the seat index point (SIP)
[ISO 3164]
3.9
load application point
LAP
point on the ROPS structure where the test load force (F) is applied
[ISO 12117-2]
3.10
load distribution device
LDD
device used to prevent localized penetration of the ROPS members at the load application point
[ISO 12117-2]

Key
1 upper ROPS member to which the lateral load is applied
2 outermost point from the end view of ROPS member (1)
3 lateral simulated ground plane (LSGP)
a vertical line passing through the point (2)
b vertical plane parallel to the machine longitudinal centreline through line a

Figure 1 — Determination of lateral simulated ground plane (LSGP)
© ISO 2011 – All rights reserved 3

---------------------- Page: 11 ----------------------

SIST ISO 8082-2:2015
ISO 8082-2:2011(E)
3.11
machine mass
m
maximum mass declared by the manufacturer, including attachments in the operating condition and with tools,
ROPS and all reservoirs filled, but excluding towed equipment (e.g. chippers, planters, discs) and any load
that could be carried on the machine
[ISO 8082-1]
3.12
operator protective structure
OPS
system of structural members arranged in such a way as to minimize the possibility of operator injury from
penetrating objects (such as whipping saplings, branches and broken winch lines)
[ISO 8082-1]
3.13
representative specimen
ROPS, mounting hardware and machine/rotating platform (complete or partial and including elements
connecting the ROPS to the frame) used for test purposes that is within the range of material and
manufacturing variances designated by the manufacturer's production specifications
NOTE 1 The intent is that all ROPS manufactured to these specifications are capable of meeting or exceeding the
stated levels of performance.
NOTE 2 Adapted from ISO 12117-2:2008, definition 3.17.
3.14
roll-over protective structure
ROPS
system of structural members whose primary purpose is to reduce the possibility of a seat-belted operator
being crushed should the machine roll-over
[ISO 8082-1]
NOTE These structural members include any sub-frame, bracket, mounting, socket, bolt, pin, suspension or flexible
shock absorber used to secure the system to the machine rotating platform.
3.15
ROPS structural member
member designed to withstand applied force and/or absorb energy
NOTE 1 This may include components such as sub-frame, bracket, fixed cab riser, mounting, socket, bolt, pin,
suspension or flexible shock absorber.
NOTE 2 Adapted from ISO 12117-2:2008, definition 3.20.
3.16
socket
S
test component that allows unrestricted point loading of the load distribution device (LDD)
[ISO 3471]
4 © ISO 2011 – All rights reserved

---------------------- Page: 12 ----------------------

SIST ISO 8082-2:2015
ISO 8082-2:2011(E)
3.17
rotating platform
structural member(s) of the machine to which the ROPS is permanently attached during normal operation
NOTE For the purposes of this part of ISO 8082, all bolt-on and normally detachable components may be removed
from the rotating platform. It is necessary only that this frame constitute a replication of the rotating platform as it attaches
to the top of the rotating bearing.
3.18
vertical projection of DLV
cross-sectional area of the column formed by vertically projecting the outside corners of the deflection-limiting
volume (DLV), excluding the foot section
NOTE Adapted from ISO 12117-2:2008, definition 3.25.
4 Symbols
U energy absorbed by the structure, related to the manufacturer's declared machine mass (m), expressed in
joules (J)
F load force, expressed in newtons (N)
m machine mass, expressed in kilograms (kg)
L length of the ROPS, expressed in millimetres (mm):
 For ROPS with cantilevered load-carrying structural members, L is the longitudinal distance from the
outer surface of the ROPS post(s) to the outer surface of the furthest cantilevered load-carrying
members, if applicable, at the top of the ROPS. See Figures 2 and 7.
 For ROPS without cantilevered load-carrying structural members, L is the distance between the front
and rear surface of the ROPS post. It is not necessary for the ROPS structural members to cover the
complete vertical projection of the DLV.
 For multiple-post ROPS, L is the greatest longitudinal distance from the outer surface of the front to
the outer surface of the rear posts. See Figure 2.
 For ROPS with curved structural members, L is defined by the intersection of plane A with the outer
surface of the vertical member at Y. Plane A is the bisector of the angle formed by the intersection of
planes B and C. B is the tangent line at the outer surface parallel to plane D. Plane D is the plane
intersecting the intersections of the curved ROPS members with the adjacent members. Plane C is
the projection of the top surface of the upper ROPS structural member. See Figure 3.
W width of ROPS, expressed in millimetres:
 For ROPS with cantilevered load-carrying structural members, W is that portion of the cantilevered
load-carrying members that covers at least the vertical projection of the width of the DLV, as
measured at the top of the ROPS from the outside faces of the cantilevered load-carrying members.
See Figures 2 and 8.
 For all other ROPS, W is the greatest total width between the outside of the left and right ROPS posts,
as measured at the top of the ROPS from the outside faces of the load-carrying members. See
Figure 2.
 For ROPS with curved structural members, W is defined by the intersection of plane A with the outer
surface of the vertical member at Y. Plane A is the bisector of the angle formed by the intersection of
planes B and C. B is the tangent line at the outer surface parallel to plane D. Plane D is the plane
intersecting the intersections of the curved ROPS members with the adjacent members. Plane C is
the projection of the top surface of the upper ROPS structural member. See Figure 3.
© ISO 2011 – All rights reserved 5

---------------------- Page: 13 ----------------------

SIST ISO 8082-2:2015
ISO 8082-2:2011(E)
 deflection of the ROPS, expressed in millimetres
H height of the load application zone, expressed in millimetres:
 For a straight member, H is the distance from the top to the bottom of the ROPS structural member,
as shown in Figure 2.
 For a curved member, H is the vertical distance from the top of the member to the vertical plane at
the end of L where it intersects the inner surface of the curved member at Y, as shown in Figure 3 a).
 For a ROPS configuration consisting of separate upper structural members as shown in Figure 4,
each structure shall fulfil the material requirements of Clause 7. Height H may include both upper
structural members, by spanning both with an LDD and with the LAP applied halfway between the
outer extremes of the upper structural members.


Key
BP boundary planes of DLV
E vertical midpoint of upper
ROPS structural member
F load force
LAP load application point
LDD load distribution device
S socket
L [W] length or width of ROPS
NOTE Two sockets are shown in this example to illustrate that more than one socket may be used simultaneously to
apply the required force.
Figure 2 — Four-post ROPS lateral load application point
6 © ISO 2011 – All rights reserved

---------------------- Page: 14 ----------------------

SIST ISO 8082-2:2015
ISO 8082-2:2011(E)

a)  Example of curved structural member (curved post) showing L or W and H dimensioning

b)  Example of curved structural member (curved post) showing load application
Key
A angle bisector of two tangent lines (B and C)
B tangent line parallel to D on outer surface of curved ROPS structural member
C projection of top surface of upper ROPS structural member
D straight line intersecting ends of curved ROPS structural member with mating members
F load force
I intersection of curved surface with flat surface
H height of load application zone
LDD load distribution device
L [W] length [width] on ROPS for LAP determination
S socket
LAP load application point
Y intersection of a vertical line from LAP to inner surface of vertical member
NOTE 1 The angle between A and B is equal to the angle between B and C.
NOTE 2 Typical, but not required, layout.
Figure 3 — Examples of curved structural member
© ISO 2011 – All rights reserved 7

---------------------- Page: 15 ----------------------

SIST ISO 8082-2:2015
ISO 8082-2:2011(E)

Key
H full height of uppermost ROPS structural member(s) referenced to determine height of LDD
L length of ROPS for LAP determination
Figure 4 — Height of load application zone of ROPS with separate upper structural members
5 Test method and facilities
CAUTION — Some of the tests specified in this International Standard involve the use of processes
which could lead to a hazardous situation.
5.1 General
The test requirements are force resistance in the lateral and vertical directions, as well as energy absorption in
the lateral and then longitudinal directions. There are limitations on deflections under lateral, longitudinal and
vertical loading. The force and energy resistance plus the limitations on deflection are intended to ensure that
the ROPS will not compromise the DLV as defined in ISO 3164 as a result of impacts during a roll-over.
5.2 Instrumentation
The test apparatus shall be equipped with instruments for measuring the force applied to the protective
structure and the deflection (deformation) of the structure. The instrument accuracy shall be in accordance
with Table 1.
Table 1 — Instrument accuracy requirements
a
Measurement
Accuracy
Deflection of ROPS 5 % of maximum deflection measured
Force applied to ROPS 5 % of maximum force measured
a
The percentages are nominal ratings of the accuracy of the instrumentation and shall not be
taken to indicate that a compensating overtest is required.

5.3 Test facilities
Facilities shall be provided for securing the representative specimen to a bedplate and for applying the
required lateral, longitudinal and vertical loads, as specified by the formulae given in Table 3.
8 © ISO 2011 – All rights reserved

---------------------- Page: 16 ----------------------

SIST ISO 8082-2:2015
ISO 8082-2:2011(E)
5.4 ROPS/rotating platform assembly and attachment to bedplate
5.4.1 The ROPS shall be attached to the machine/rotating platform or body as it would be on an operating
machine. A complete machine or rotating platform is not required for the evaluation. Nevertheless, the
machine/rotating platform or body and mounted ROPS test specimen shall represent the structural
configuration of an operating installation. In cases of multiple rotating structural elements, the lowest rotating
means shall be included in the test. All normally detachable windows, panels, doors and other non-structural
elements shall be removed so that they neither contribute to, nor detract from, the structural evaluation.
The ROPS/rotating platform assembly shall be secured to the bedplate so that the members connecting the
assembly and bedplate experience minimal deflection during testing.
Non-ROPS elements (polycarbonate windows, OPS, etc.) with structural attributes that contribute to the
performance of the ROPS structure may be included.
5.4.2 The assembly shall be secured or modified, or both, so that any machine element that might be
considered as suspension (rubber, gas, gas-oil or mechanical spring) shall be effectively eliminated as an
energy absorber. The ROPS structural members may, however, include suspension or flexible shock
absorbers, which shall not be altered.
5.4.3 During lateral loading, the representative specimen shall not receive any support from the bedplate,
other than that due to the initial attachment.
5.4.4 The test shall be conducted with any machine/ground suspension elements blocked externally so that
they do not contribute to the load-deflection behaviour of the test specimen. Elements used to attach the
ROPS to the machine/rotating platform acting as a load path shall be in place and considered part of the
ROPS structural member.
5.4.5 If equipped with a cab tilt feature, for load testing the cab shall be positioned in the normal operating
position for forestry operations. If the tilt mechanism is designed to transfer, it shall be considered part of the
representative specimen. Tilt mechanisms used to connect the ROPS to the structure during normal working
operation shall be considered part of the representative specimen. Tilt mechanisms used for service access or
transport and which are fixed into position during working operation do not require their rotating mechanism to
be included as part of the representative specimen.
6 Test loading procedure
6.1 General
6.1.1 The test loading sequence shall be
a) lateral load energy and force,
b) vertical load force, and
c) longitudinal load energy.
6.1.2 All tests prescribed in Table 3 shall be conducted on the same representative specimen. If the load
must be stopped and re-applied for any reason, then only the additional energy summed after reaching the
maximum deflection of the first loading shall be added to the sum.
6.1.3 The DLV and its location shall be in accordance with ISO 3164. The DLV shall be fixed firmly to the
same part of the machine to which the operator's seat is normally secured, and shall remain there during the
entire formal test period. For machines with a reversible operator's position, the DLV is considered to be the
combined clearance zones for the two positions.
© ISO 2011 – All rights reserved 9

---------------------- Page: 17 ----------------------

SIST ISO 8082-2:2015
ISO 8082-2:2011(E)
6.1.4 All LAPs shall be identified and marked on the structure before any loading is applied. No repair or
straightening of any ROPS/machine member shall be carried out during or between loading phases. An LDD
may be used to prevent localized penetration. The LDD shall not impede rotation of the ROPS.
NOTE The figures referenced in the following subclauses are illustrative and it is not intended that they restrict the
design of loading devices.

Key
1 ROPS
2 rotating platform
3 bedplate
Figure 5 — Anchorage of rotating platform
6.1.5 For ROPS having more than two posts, the LDD shall not distribute the load over a distance greater
than 80 % of the length, L. Figure 3 provide guidance on L for curved surfaces.
6.1.6 The height of the LDD shall be as determined from Figures 2, 3 and 4 for the upper ROPS structural
member(s). The LDD may be formed so that it comes into contact with the contour of the load application
section(s) of the ROPS.
6.1.7 For all one- or two-post ROPS, the initial loading shall be dictated by the length, L, and the vertical
projections of the front and rear boundary planes of the DLV. The LAP shall not be within L/3 of the ROPS
structure. Should the L/3 point be between the vertical projection of the DLV and the ROPS structure, the LAP
shall be moved away from the structure until it enters the vertical projection of the DLV (see Figure 2).
6.1.8 For ROPS with more than two posts, the LAP shall be located between vertical projections of the front
and rear boundary planes of the DLV. See Figure 2.
6.1.9 If the operator's seat is off the machine's or rotating platform's longitudinal centreline, the loading shall
be against the outermost side nearest the seat. If mounting of the ROPS is such that different force-deflection
relations are obtained from loading from left or right, the side loaded shall be that which will place the most
severe requirements on the representative specimen.
6.1.10 For on-centreline seats, if mounting of the ROPS is such that different force-deflection relations are
obtained from loading from left or right, the side loaded shall be that which will place the most severe
requirements on the ROPS/machine assembly.
10 © ISO 2011 – All rights reserved

---------------------- Page: 18 ----------------------

SIST ISO 8082-2:2015
ISO 8082-2:2011(E)
6.1.11 The initial direction of the loading shall be horizontal and perpendicular to a vertical plane through the
machine's or rotating platform's longitudinal centreline. As loading continues, ROPS/machine/rotating platform
deformations may cause the direction of loading to change; this is permissible.
6.1.12 The rate of application of deflection (load) shall be such that the loading may be considered static,
i.e. a speed of 5 mm/s. At deflection increments of no greater than 15 mm at the point of application of the
resultant load, the force and deflection shall be recorded and plotted. The loading shall be continued until the
ROPS has achieved both the force and energy requirements. The area under the resulting force-deflection
curve equals
...

NORME ISO
INTERNATIONALE 8082-2
Première édition
2011-12-01


Machines forestières automotrices —
Essais de laboratoire et exigences de
performance pour les structures de
protection au retournement —
Partie 2:
Machines ayant une tourelle d'orientation
avec une cabine et une flèche sur
la tourelle
Self-propelled machinery for forestry — Laboratory tests and
performance requirements for roll-over protective structures —
Part 2: Machines having a rotating platform with a cab and boom on
the platform




Numéro de référence
ISO 8082-2:2011(F)
©
ISO 2011

---------------------- Page: 1 ----------------------
ISO 8082-2:2011(F)

DOCUMENT PROTÉGÉ PAR COPYRIGHT


©  ISO 2011
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous
quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit
de l'ISO à l'adresse ci-après ou du comité membre de l'ISO dans le pays du demandeur.
ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Publié en Suisse

ii © ISO 2011 – Tous droits réservés

---------------------- Page: 2 ----------------------
ISO 8082-2:2011(F)
Sommaire Page
Avant-propos . iv
Introduction . v
1  Domaine d'application . 1
2  Références normatives . 1
3  Termes et définitions . 2
4  Symboles . 5
5  Méthode d'essai et installations . 9
5.1  Généralités . 9
5.2  Instrumentation . 9
5.3  Installations d'essai. 10
5.4  Ensemble ROPS/tourelle d'orientation et sa fixation au banc d'essai . 10
6  Mode opératoire d'application de la charge d'essai . 10
6.1  Généralités . 10
6.2  Charge latérale . 13
6.3  Charge verticale . 13
6.4  Charge longitudinale . 14
7  Exigences relatives aux températures et aux matériaux . 15
8  Exigences de performance . 16
9  Étiquetage de la ROPS . 18
9.1  Généralités . 18
9.2  Spécifications d'étiquetage . 18
9.3  Contenu de l'étiquette . 18
10  Rapport d'essai . 18
Annexe A (normative) Rapport d'essai pour l'ISO 8082-2 . 19
Bibliographie . 21

© ISO 2011 – Tous droits réservés iii

---------------------- Page: 3 ----------------------
ISO 8082-2:2011(F)
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée
aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du
comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI,
Partie 2.
La tâche principale des comités techniques est d'élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur
publication comme Normes internationales requiert l'approbation de 75 % au moins des comités membres
votants.
L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable de ne
pas avoir identifié de tels droits de propriété et averti de leur existence.
L'ISO 8082-2 a été élaborée par le comité technique ISO/TC 23, Tracteurs et matériels agricoles et forestiers,
sous-comité SC 15, Matériel forestier.
L'ISO 8082 comprend les parties suivantes, présentées sous le titre général Machines forestières
automotrices — Essais de laboratoire et exigences de performance pour les structures de protection au
retournement:
 Partie 1: Machines communes
 Partie 2: Machines ayant une tourelle d'orientation avec une cabine et une flèche sur la tourelle
iv © ISO 2011 – Tous droits réservés

---------------------- Page: 4 ----------------------
ISO 8082-2:2011(F)
Introduction
Les pelles de terrassement utilisées dans les applications de transition dans des sites arborés, mais pas dans
des applications forestières, sont traitées dans l'ISO 12117-2. En raison de la similarité des pelles avec les
machines forestières ayant une tourelle d'orientation avec une cabine et une flèche sur la tourelle, la présente
partie de l'ISO 8082 spécifie des méthodes d'essai et des modes opératoires similaires à ceux donnés dans
l'ISO 12117-2 et l'ISO 3471.
© ISO 2011 – Tous droits réservés v

---------------------- Page: 5 ----------------------
NORME INTERNATIONALE ISO 8082-2:2011(F)

Machines forestières automotrices — Essais de laboratoire et
exigences de performance pour les structures de protection au
retournement —
Partie 2:
Machines ayant une tourelle d'orientation avec une cabine et
une flèche sur la tourelle
1 Domaine d'application
La présente partie de l'ISO 8082 établit un moyen uniforme et reproductible pour évaluer les caractéristiques
de charge des structures de protection au retournement (ROPS) des machines forestières automotrices sous
charges statiques, et spécifie des exigences de performance d'un échantillon représentatif dans ces
conditions de charge. Elle est applicable aux machines configurées en tant que machines forestières et aux
machines forestières telles que définies dans l'ISO 6814, ayant une tourelle d'orientation avec une cabine,
munies ou non d'un rehausseur de cabine fixe, et ayant une flèche sur la même tourelle ou séparée, et
destinées à être utilisées par un opérateur maintenu par une ceinture de sécurité.
La présente partie de l'ISO 8082 n'est pas applicable aux machines forestières équipées d'un rehausseur de
1)
cabine.
2 Références normatives
Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les
références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du
document de référence s'applique (y compris les éventuels amendements).
ISO 898-1, Caractéristiques mécaniques des éléments de fixation en acier au carbone et en acier allié —
Partie 1: Vis et goujons et tiges filetées de classes de qualité spécifiées — Filetages à pas gros et filetages à
pas fin
ISO 898-2, Caractéristiques mécaniques des éléments de fixation en acier au carbone et en acier allié —
Partie 2: Écrous de classes de qualité spécifiées — Filetages à pas gros et filetages à pas fin
ISO 3164, Engins de terrassement — Étude en laboratoire des structures de protection — Spécifications pour
le volume limite de déformation
ISO 3411, Engins de terrassement — Dimensions des opérateurs et espace enveloppe minimal pour les
opérateurs
ISO 5353, Engins de terrassement, et tracteurs et matériels agricoles et forestiers — Point repère du siège
ISO 6814, Matériel forestier — Machines mobiles et automotrices — Termes, définitions et classification

1) Le comportement de retournement des machines équipées d'un rehausseur de cabine est encore à l'étude.
© ISO 2011 – Tous droits réservés 1

---------------------- Page: 6 ----------------------
ISO 8082-2:2011(F)
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s'appliquent.
3.1
banc d'essai
partie hautement rigide de la structure d'essai à laquelle le châssis de l'engin est fixé aux fins de l'essai
[ISO 12117-2]
3.2
plan limite
BP
plan défini comme la projection verticale des plans de la zone arrière, latérale et de la zone des genoux du
DLV
NOTE Le plan limite permet de déterminer la zone d'application de la charge.
[ISO 12117-2]
3.3
volume limite de déformation
DLV
approximation orthogonale d'un grand opérateur assis comme défini dans l'ISO 3411, de sexe masculin,
portant des vêtements normaux et un casque de protection
[ISO 8082-1]
3.4
déformation de la ROPS
mouvement de la section de la ROPS, système de montage et châssis mesuré au point d'application de la
charge, en excluant l'effet du mouvement éventuel du montage d'essai
[ISO 12117-2]
3.5
rehausseur de cabine
moyen supplémentaire permettant d'élever et d'abaisser la cabine par rapport à la tourelle d'orientation
3.6
rehausseur de cabine fixe
structure supplémentaire modifiant la position en hauteur de la cabine par rapport à la tourelle de rotation et
considérée comme une membrure de la ROPS
3.7
plan latéral fictif du sol
LSGP
pour une machine s'immobilisant sur le flanc, plan incliné de 15° s'écartant du DLV et passant par l'axe
horizontal qui se trouve dans le plan vertical du point le plus à l'extérieur de la ROPS
Voir Figure 1.
NOTE 1 Le LSGP est déterminé sur une ROPS non soumise à une charge et il se déplace avec la membrure sur
laquelle la charge est appliquée, tout en maintenant l'angle de 15° qu'il forme avec la verticale.
NOTE 2 Adapté de l'ISO 8082-1:2009, définition 3.5.1.
2 © ISO 2011 – Tous droits réservés

---------------------- Page: 7 ----------------------
ISO 8082-2:2011(F)

Légende
1 élément supérieur de la ROPS auquel la charge latérale est appliquée
2 point le plus à l'extérieur de l'élément supérieur (1) vu de côté
3 plan fictif latéral du sol (LSGP)
a ligne verticale passant par le point (2)
b plan vertical parallèle à l'axe longitudinal de la machine et comprenant la ligne a
Figure 1 — Détermination du plan fictif latéral du sol (LSGP)
3.8
axe de positionnement
LA
axe horizontal pour le positionnement du DLV par rapport au point repère du siège (SIP)
[ISO 3164]
3.9
point d'application de la charge
LAP
point de la structure de la ROPS où est appliquée la force de charge d'essai (F)
[ISO 12117-2]
3.10
dispositif de répartition de la charge
LDD
dispositif utilisé pour empêcher la pénétration localisée des montants de la ROPS au point d'application de la
charge
[ISO 12117-2]
© ISO 2011 – Tous droits réservés 3

---------------------- Page: 8 ----------------------
ISO 8082-2:2011(F)
3.11
masse de la machine
m
masse maximale déclarée par le constructeur, y compris les équipements en condition de fonctionnement, les
outils, la ROPS et l'ensemble des réservoirs pleins, mais sans les équipements tractés (par exemple
déchiqueteuses, planteuses, charrues à disques), ni les charges éventuelles susceptibles d'être portées par la
machine
[ISO 8082-1]
3.12
structure de protection de l'opérateur
OPS
assemblage de membrures disposé de façon à minimiser la possibilité de blessures de l'opérateur par des
objets projetés vers lui (tels que arbrisseaux fouettant, branchages et câbles cassés de treuil)
[ISO 8082-1]
3.13
échantillon représentatif
ROPS, éléments de montage et machine/tourelle d'orientation (dans leur totalité ou en partie et comprenant
des éléments permettant de raccorder la ROPS au châssis) utilisés à des fins d'essai et se conformant aux
spécifications du fabricant relatives à la conception pour différentes gammes de matériels et fabrications
NOTE 1 L'objectif est qu'à terme toutes les ROPS fabriquées suivant ces spécifications satisfassent ou dépassent les
niveaux de performance établis.
NOTE 2 Adapté de l'ISO 12117-2:2008, définition 3.17.
3.14
structure de protection au retournement
ROPS
assemblage de membrures ayant pour rôle principal de réduire le risque d'écrasement d'un opérateur
maintenu par une ceinture de sécurité en cas de retournement de la machine
[ISO 8082-1]
NOTE Les membrures comprennent tous les cadres secondaires, entretoises, éléments de montage, sièges de
fixation, boulons, goupilles, suspensions ou amortisseurs souples utilisés pour fixer l'ensemble de la tourelle d'orientation
de la machine.
3.15
membrure d'une ROPS
élément conçu pour résister à la force appliquée et/ou pour absorber de l'énergie
NOTE 1 Il peut s'agir de composants tels que les cadres secondaires, entretoises, rehausseurs de cabine fixes,
éléments de montage, sièges de fixation, boulons, goupilles, suspensions ou amortisseurs souples.
NOTE 2 Adapté de l'ISO 12117-2:2008, définition 3.20.
3.16
chape
S
composant d'essai permettant le chargement concentré non limité du dispositif de répartition de la charge
(LDD)
[ISO 3471]
4 © ISO 2011 – Tous droits réservés

---------------------- Page: 9 ----------------------
ISO 8082-2:2011(F)
3.17
tourelle d'orientation
membrure(s) de la machine à laquelle (auxquelles) la ROPS est fixée en permanence pendant le
fonctionnement normal
NOTE Pour les besoins de la présente partie de l'ISO 8082, tous les éléments boulonnés et normalement amovibles
peuvent être retirés de la tourelle d'orientation. Cette structure ne sert que comme réplique de la tourelle d'orientation
dans la mesure où elle se fixe en haut du support de rotation.
3.18
projection verticale du DLV
section transversale de la colonne formée par la projection verticale des angles extérieurs du volume limite de
déformation (DLV), à l'exclusion de la base de la section
NOTE Adapté de l'ISO 12117-2:2008, définition 3.25.
4 Symboles
U énergie absorbée par la structure en fonction de la masse de la machine déclarée par le fabricant (m),
exprimée en joules (J)
F force de charge, exprimée en newtons (N)
m masse de la machine, exprimée en kilogrammes (kg)
L longueur de la ROPS, exprimée en millimètres (mm):
 Pour les ROPS avec membrures porteuses en porte-à-faux, L est la distance longitudinale entre la
surface extérieure des montants de la ROPS et la surface extérieure des éléments porteurs en
porte-à-faux les plus éloignés, s'il y a lieu, au sommet de la ROPS. Voir les Figures 2 et 7.
 Pour les ROPS sans membrures porteuses en porte-à-faux, L correspond à la distance entre la
surface avant et arrière du montant de la ROPS. Il n'est pas nécessaire que les membrures de la
ROPS couvrent entièrement la projection verticale du DLV.
 Pour les ROPS à plusieurs montants, L est la distance longitudinale la plus grande entre la surface
extérieure du montant avant et la surface extérieure du montant arrière. Voir Figure 2.
 Pour les ROPS avec membrures curvilignes, L est définie par l'intersection du plan A avec la surface
extérieure du membre vertical au point Y. Le plan A est la bissectrice de l'angle formé par
l'intersection des plans B et C. B est la tangente de la surface extérieure parallèle au plan D. Le
plan D est le plan coupant les intersections des éléments curvilignes de la ROPS avec les éléments
adjacents. Le plan C est la projection de la surface supérieure de la membrure de la ROPS la plus
haute. Voir Figure 3.
W largeur de la ROPS, exprimée en millimètres (mm):
 Pour une ROPS avec des membrures porteuses en porte-à-faux, W est la partie des éléments
porteurs en porte-à-faux couvrant au moins la projection verticale de la largeur du DLV, mesurée au
sommet de la ROPS, à partir des faces extérieures des éléments porteurs en porte-à-faux. Voir
Figures 2 et 8.
 Pour toutes les autres ROPS, W est la largeur totale la plus grande entre l'extérieur des montants
gauche et droit de la ROPS, mesurée au sommet de la ROPS, à partir des faces extérieures des
éléments porteurs. Voir Figure 2.
 Pour les ROPS avec membrures curvilignes, W est l'intersection du plan A avec la surface extérieure
de l'élément vertical au point Y. Le plan A est la bissectrice de l'angle formé par l'intersection des
© ISO 2011 – Tous droits réservés 5

---------------------- Page: 10 ----------------------
ISO 8082-2:2011(F)
plans B et C. B est la tangente de la surface extérieure parallèle au plan D. Le plan D est le plan
coupant les intersections des éléments curvilignes de la ROPS avec les éléments adjacents. Le
plan C est la projection de la surface supérieure de la membrure de la ROPS la plus haute. Voir
Figure 3.
 déformation de la ROPS, exprimée en millimètres (mm)
H hauteur de la zone d'application de la charge, exprimée en millimètres (mm):
 Pour un élément rectiligne, H est la distance entre le haut et le bas de la membrure de la ROPS, tel
que représenté à la Figure 2.
 Pour un élément curviligne, H est la distance verticale entre le sommet de l'élément et le plan vertical
à l'extrémité de L où elle coupe la surface intérieure de l'élément curviligne en Y, tel que représenté
à la Figure 3 a).
 Pour une configuration de la ROPS avec des membrures supérieures séparées, telle que
représentée à la Figure 4, chaque structure doit respecter les exigences relatives aux matériaux de
l'Article 7. La hauteur H peut inclure les deux membrures supérieures en les étendant avec un LDD
et avec le LAP appliqué à mi-distance des extrémités extérieures des membrures supérieures.
6 © ISO 2011 – Tous droits réservés

---------------------- Page: 11 ----------------------
ISO 8082-2:2011(F)


Légende
BP plans limites du DLV
E point médian vertical de la membrure supérieure de la ROPS
F force de charge
LAP point d'application de la charge
LDD dispositif de répartition de la charge
S chape
L [W] longueur [largeur] de la ROPS
NOTE Deux chapes sont montrées dans cet exemple pour illustrer que plus d'une chape peut être utilisée
simultanément pour appliquer la force.
Figure 2 — Point d'application d'une charge latérale pour une ROPS à quatre montants
© ISO 2011 – Tous droits réservés 7

---------------------- Page: 12 ----------------------
ISO 8082-2:2011(F)

a)  Exemple d'une membrure curviligne (montant curviligne) faisant apparaître
les dimensions L ou W et H

b)  Exemple d'une membrure curviligne (montant curviligne) faisant apparaître
l'application de la force
Légende
A bissectrice de l'angle formé par les deux tangentes (B et C)
B tangente parallèle à D sur la surface extérieure de la membrure curviligne de la ROPS
C projection de la surface supérieure de la membrure supérieure de la ROPS
D droite coupant les extrémités de la membrure curviligne de la ROPS avec les éléments d'ajustement
F force de charge
I intersection de la surface curviligne avec la surface plane
H hauteur de la zone d'application de la charge
LDD dispositif de répartition de la charge
L [W] longueur [largeur] de la ROPS pour déterminer le LAP
S chape
LAP point d'application de la charge
Y intersection d'une ligne verticale au LAP avec la surface intérieure de l'élément vertical
NOTE 1 L'angle entre A et B est égal à l'angle entre B et C.
NOTE 2 L'exemple montré est une configuration type, mais elle n'est pas obligatoire.
Figure 3 — Exemples de membrures curvilignes (montants curvilignes)
8 © ISO 2011 – Tous droits réservés

---------------------- Page: 13 ----------------------
ISO 8082-2:2011(F)

Légende
H hauteur totale des membrures les plus élevées de la ROPS servant de référence pour déterminer la hauteur du LDD
L longueur de la ROPS pour la détermination du LAP
Figure 4 — Hauteur de la zone d'application de la charge de la ROPS
avec membrures supérieures séparées
5 Méthode d'essai et installations
AVERTISSEMENT — Certains des essais spécifiés dans la présente Norme internationale impliquent
l'utilisation de processus susceptibles de donner lieu à une situation dangereuse.
5.1 Généralités
Les exigences d'essai sont la résistance à la force dans les directions latérale et verticale ainsi que
l'absorption d'énergie dans la direction latérale, puis longitudinale. Il existe des limites de déformation sous
charges latérale, longitudinale et verticale. Les exigences de force et d'énergie ainsi que les limites de
déformation ont pour objet de garantir que la ROPS ne remettra pas en cause le DLV défini dans l'ISO 3164,
consécutivement aux impacts subis au cours d'un retournement.
5.2 Instrumentation
L'appareillage d'essai doit être pourvu d'instruments permettant de mesurer la force appliquée à la structure
de protection ainsi que la déformation de la structure. L'exactitude des instruments doit être conforme aux
exigences données dans le Tableau 1.
Tableau 1 — Exigences d'exactitude des instruments
a
Mesurage
Exactitude
Déformation de la ROPS 5 % de la déformation maximale mesurée
Force appliquée à la ROPS
5 % de la force maximale mesurée
a
Ces valeurs sont des valeurs nominales de l'exactitude de l'instrumentation et ne doivent pas servir à
indiquer qu'un essai compensateur est nécessaire.

© ISO 2011 – Tous droits réservés 9

---------------------- Page: 14 ----------------------
ISO 8082-2:2011(F)
5.3 Installations d'essai
Des installations permettant de fixer l'échantillon représentatif sur le banc d'essai et d'appliquer les charges
latérale, longitudinale et verticale requises, telles que spécifiées par la formule donnée dans le Tableau 3,
doivent être prévues.
5.4 Ensemble ROPS/tourelle d'orientation et sa fixation au banc d'essai
5.4.1 La ROPS doit être fixée à la machine/tourelle d'orientation ou au corps de la machine comme elle le
serait sur une machine en service. Une machine ou une tourelle d'orientation complète n'est pas requise pour
l'évaluation. Toutefois, la machine/tourelle d'orientation ou le corps et l'éprouvette de la ROPS montée doivent
représenter la configuration structurelle d'une installation en état de fonctionnement. En présence de plusieurs
membrures de rotation, les moyens de rotation les plus bas doivent être inclus dans l'essai. Tous les
panneaux, vitres, portes normalement amovibles et tous les autres éléments non porteurs doivent être
démontés de manière à ne pas fausser l'évaluation de la structure.
L'ensemble ROPS/tourelle d'orientation doit être fixé au banc d'essai de sorte que les éléments reliant
l'assemblage au banc d'essai ne subissent qu'une déformation minimale pendant les essais.
Les éléments n'appartenant pas à la ROPS (par exemple les fenêtres en polycarbonate, OPS, etc.),
comportant des attributs structurels contribuant aux performances de la structure de la ROPS, peuvent être
inclus.
5.4.2 L'ensemble doit être fixé ou modifié de sorte que tout élément de la machine pouvant être considéré
comme un élément de suspension (caoutchouc, ressort à gaz, ressort gaz-hydraulique ou ressort mécanique)
soit effectivement éliminé en tant qu'absorbeur d'énergie. Toutefois, les membrures de la ROPS peuvent
comporter une suspension ou des amortisseurs de chocs souples qui, eux, ne doivent pas être modifiés.
5.4.3 Lors de l'application de la charge latérale, l'échantillon représentatif ne doit pas être retenu par le
banc d'essai autrement que par les fixations initiales.
5.4.4 L'essai doit être pratiqué avec les éléments de suspension de la machine/sol bloqués de manière
externe de sorte qu'ils ne contribuent pas au comportement de déformation de l'éprouvette due à la charge.
Les éléments utilisés pour fixer la ROPS à la machine/tourelle d'orientation et agissant en tant que chemin de
charge doivent être en place et considérés comme faisant partie de la membrure de la ROPS.
5.4.5 Pour effectuer les essais de charge, la cabine, si elle est basculable, doit être en position de
fonctionnement normale pour effectuer les opérations forestières. Si le mécanisme de basculement est conçu
pour le transfert, il doit être considéré comme faisant partie de l'échantillon représentatif. Les mécanismes de
basculement qui relient le ROPS à la structure pendant le fonctionnement normal de travail doivent être
considérés comme faisant partie de l'échantillon représentatif. Les mécanismes de basculement qui sont
utilisés pour les accès de service ou pour le transport et qui sont immobiles en cours de fonctionnement ne
nécessitent pas que leur mécanisme de rotation fasse partie de l'échantillon représentatif.
6 Mode opératoire d'application de la charge d'essai
6.1 Généralités
6.1.1 La séquence d'application de la charge d'essai doit être la suivante:
a) énergie et force de la charge latérale;
b) force de la charge verticale;
c) énergie de la charge longitudinale.
10 © ISO 2011 – Tous droits réservés

---------------------- Page: 15 ----------------------
ISO 8082-2:2011(F)
6.1.2 Tous les essais spécifiés dans le Tableau 3 doivent être pratiqués sur le même échantillon
représentatif. Si, pour une raison quelconque, la charge doit être arrêtée, puis appliquée à nouveau, seule
l'énergie supplémentaire cumulée après avoir atteint la déformation maximale lors de la première application
de la charge doit être ajoutée à la somme.
6.1.3 Le DLV et son emplacement doivent être conformes à l'ISO 3164. Le DLV doit être solidement fixé à
la partie de la machine à laquelle le siège de l'opérateur est normalement assujetti et doit rester à cet
emplacement pendant toute la durée de l'essai officiel. Pour les machines munies d'un siège d'opérateur
réversible, le DLV est défini comme étant les zones de dégagement combinées pour les deux positions.
6.1.4 Tous les LAP doivent être identifiés et marqués sur la structure avant application d'une charge
quelconque. Aucun élément de l'ensemble ROPS/machine ne doit être réparé ou redressé pendant ou entre
les phases d'application de la charge. Un LDD peut être utilisé pour empêcher la pénétration localisée. Il ne
doit pas gêner la rotation de la ROPS.
NOTE Les figures mentionnées dans les paragraphes qui suivent sont uniquement illustratives et ne sont pas
destinées à imposer une restriction sur la conception des dispositifs d'application de la charge.

Légende
1 ROPS
2 tourelle d'orientation
3 banc d'essai
Figure 5 — Ancrage de la tourelle d'orientation
6.1.5 Pour une ROPS comportant plus de deux montants, le LDD ne doit pas répartir la charge sur une
distance représentant plus de 80 % de la longueur L. La Figure 3 renseigne sur la longueur, L, des surfaces
curvilignes.
6.1.6 La hauteur du LDD doit être telle que déterminée d'après les Figures 2, 3 et 4 pour les membrures
supérieures de la ROPS. La forme du LDD peut être façonnée pour épouser le contour des sections
d'application de la charge de la ROPS.
6.1.7 Pour toutes les ROPS à un ou deux montant(s), la longueur, L, ainsi que les projections verticales des
plans limites avant et arrière du DLV doivent déterminer la charge initiale. Le LAP ne doit pas se situer à
moins de L/3 de la structure de la ROPS. Dans le cas où le point L/3 se trouve entre la projection verticale du
DLV et la structure de la ROPS, le LAP doit être éloigné de la structure jusqu'à ce qu'il soit dans la projection
verticale du DLV (voir Figure 2).
© ISO 2011 – Tous droits réservés 11

---------------------- Page: 16 ----------------------
ISO 8082-2:2011(F)
6.1.8 Pour une ROPS comportant plus de deux montants, le LAP doit se situer entre les projections
verticales d
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.